Optimum Design - Sheet 1 - Solution
Problem Formulation

1. Enterprising chemical engineering students have set up a still in a bathtub. They can
produce 225 bottles of pure alcohol each week. They bottle two products from alcohol:
(i) wine, 20 proof, and (ii) whiskey, at 80 proof. Recall that pure alcohol is 200 proof.
They have an unlimited supply of water but can only obtain 800 empty bottles per week
because of stiff competition. The weekly supply of sugar is enough for either 600
bottles of wine or 1200 bottles of whiskey. They make $1.00 profit on each bottle of
wine and $2.00 profit on each bottle of whiskey. They can sell whatever they produce.
How many bottles of wine and whiskey should they produce each week to maximize
profit. Formulate the design optimization problem.

Solution:

Given: The amount of bottles of pure alcohol which can be produced each week. the two types of
alcohol which are produced. the amount of empty bottles available per week. the amount of each
alcohol which can be produced based on the weekly sugar supply, and the profits for each
alcohol type.

Required: It 1s desired to find the amount of bottles of wine and whisky which should be produced.
each week, to maximize profit.

Procedure: We follow the five step process to formulate the problem as an optimization problem.

Step 1: Problem Statement
Shown above

Step 2: Data and Information Collection
Shown above

Step 3: Definition of Design Variables
x1 = bottles of wine produced/week
x2 = bottles of whiskey produced/week

Step 4: Optimization Criterion
Optinization criterion 1s to maximize profit, and the cost function is defined as
Prafit=x1+2x2

Step 5: Formulation of Constraints
Supply of Bottles Constraint: x; +x2 = 800
Supply of Alcohol Constraint: 0.1x; + 0.4x: = 225
Sugar Linmtation Constraint: x1/600 +x./1200 < 1
Explicit Design Vanable Constraints:
x120, 220



2. Design a can closed at one end using the smallest area of sheet metal for a specified
interior volume of 600 cm?. The can is a right circular cylinder with interior height h
and radius r. The ratio of height to diameter must not be less than 1.0 nor greater than
1.5. The height cannot be more than 20 cm. Formulate the design optimization problem.

Solution:

Given: The desired mterior can volume, the minimum and maximum ratio of height to diameter, and
the maximum height.

Required: It 15 desired to find the design which nmunmuzes the area of sheet metal for the can.

Procedure: We follow the five step process to formulate the problem as an optinuzation problem.

Step 1: Problem Statement
Shown above

Step 1: Data and Information Collection
Shown above

Step 3: Definition of Design Variables
h = mtenor height of the can in cm
= interior radius of the can m cm

Step 4: Optimization Criterion
Optinization criterion 15 to minimmize area of sheet metal, and the cost function 1s defined as
Area=nr’ + 2urh. , cm?

Step 5: Formulation of Constraints
Volume Constraint: mw72h =600, , cm?
Height/Diameter Constraints:
W2r=1
h2r =15
Explicit Design Vanable Constraints:
h=20em hz0cm; r=0,cm



3. A company has m manufacturing facilities. The facility at the ith location has capacity
to produce bi units of an item. The product should be shipped to n distribution centers.
The distribution center at the jth location requires at least a; units of the item to satisfy
demand. The cost of shipping an item from the ith plant to the jth distribution center is
cij. Formulate a minimum cost transportation system to meet each distribution center’s
demand without exceeding the capacity of any manufacturing facility.

Solution:

Given: The number of manufacturing facilities the company owns, the capacity of the ith facility to
produce &; units of an item . the number of distibution centers the product should be shipped too.
the mnimum number of items. a;. required by the jth distribution center. and the cost to ship an
ttem from the ith plant to the jth distnbution center.

Required: It 15 desired to design a transportation system which mininuzes costs and meets the
constraints set by the two types of facilities.

Procedure: We follow the five step process to formulate the problem as an optimization problem.

Step 1: Problem Statement
Shown above

Step 2: Data and Information Collection
Shown above

Step 3: Definition of Design Variables
xi - nmumber of items produced at the ith facility shapped to jth distnibution center
wherei=ltom;j=1ton

Step 4: Optimization Criterion
Optimization criterion 15 to minimize the cost, and the cost function 1s defined as

Cost= %" > ¢.x,

1=l el

Step 5: Formulation of Constraints

Capacity of Manufacturing Facility Constramt: 3 x, <b fori=1tom

=l

m
Demand Constraint: Zx{,- za;forj=1ton. x,z0foralliand j
=1



4. Design of a two-bar truss. Design a symmetric two-bar truss (both members have the
same cross section) shown in Fig. 1 to support a load W. The truss consists of two steel
tubes pinned together at one end and supported on the ground at the other. The span of
the truss is fixed at s. Formulate the minimum mass truss design problem using height
and the cross-sectional dimensions as design variables. The design should satisfy the
following constraints:

a. Because of space limitations, the height of the truss must not exceed by, and
must not be less than b..

b. The ratio of the mean diameter to thickness of the tube must not exceed bs.

c. The compressive stress in the tubes must not exceed the allowable stress o, for
steel.

d. The height, diameter, and thickness must be chosen to safeguard against
member buckling.

Use the following data: W = 10 kN; spans=2m; by =5m; b2 =2 m; b3 =90 m;

allowable stress, o, = 250 MPa; modulus of elasticity, E = 210 GPa; mass density,

p = 7850 kg/m?; factor of safety against buckling, FS = 2; 0.1 <D < 2 (m); and

0.01<t<0.1 (m).

Section at A-A

Solution:

Given: Constraints 1-4 listed above and the factor of safety against buckling i the data section
above.

Required: It 15 desired to design a truss which mimimizes mass using height and the cross sectional
dimensions as design variables.

Procedure: We follow the five step process to formulate the problem as an optimization problem.

Step 1: Problem Statement
Shown above

Step 2: Data and Information Collection
Depending on the units used for various parameters, the final expressions for various function
will look different. The following table give values of various parameters depending on the units
used:



Variable N&m N & mm N & cm EN & m MN & m
Load W 10,000 10,000 10,000 10 1x102
[ 250 = 10% | 250 250 = 1072 250 » 10% | 250
Modulus, E 210 = 10° 210 x 102 210 x 103 210 x 10% 210 x 10°
Density, p 7850 7.85x 10—% | 7.85x 102 | 7850 7850
Span, s 2 2000 200 2 2
b, 5 5000 500 5 5
b, 2 2000 200 2 2
Dypin 0.1 100 10 0.1 0.10
[ 2 2000 200 2 2
Lonin 0.01 10 1 0.01 0.01
i 0.1 100 10 0.1 0.1

Other data/expressions that need to be collected are:

Member length, [ = ,/H? + (0.55)2

Member force: Draw the free-body diagram of the loaded node and sum up the forces mn the
vertical direction:

—W 4 2Pcos8 =0; or P=

Member stress:

Cross-sectional area: The expression will depend on what vaniables

P
og=-
A

2eos8 '

are used:

A=7(D; —D?) =nDt

H
cosf = T

Moment of inertia: [ = g{ng —D*) = g{nat + Dt?)

Buckling load {critical load) for pin-pin column: P.,. =

Step 3: Definition of Design Variables

H=height of the truss, m

D = mean diameter of the tube, m

t = thickness of the tube, m

Step 4: Optimization Criterion
Optinuzation criterion 1s to mimmize mass, and the cost fimction 15 defined as

Mass= 2pAl

where o 1s the mass density of the material.

w2 El
EZ

FOERMULATION 1: In terms of intermediate variables




Step 5: Formulation of Constraints

Stress Constraint: T=0,
Buckling Constraint: P = %

Explicit Design Variable Constraints:

H<h: Hzb; Dft<h;
01=D=2m; 01=2+=0.1m

FOBRMULATION 2: Explicitly in terms of the design variables.

Use N and m as the units, and the corresponding values for various parameters.
Member Force: P= s[4+ H" ]l‘:,."'EH

Step 3: Definition of Design Variables
H=height of the tuss, m
D'=mean diameter of the tube, m
t= thickness of the tube, m

Step 4: Optimization Criterion
Optimization criferion is to minimize mass, and the cost function 15 defined as
<

Mass = 2pAl=2p(=aDt)(s*/4+H*)
where p1s the mass density of the matenial.

Substimting the given values, we get

Mass =2(7850) n D)1+ H*)T =49323 De(1 + H* )Y, kg

Step 5: Formulation of Constraints
Stress Constraint: PAd<g,; W4+ H]]J-","rEH{fo]Eﬂ'ﬂ
wE[x(D't+Dt')/ 8]

Buckling Constraint: P= P, .-"I:FS:I; B = n EINl = - -
(RS Fam)

ot 211 2 3 3
w(st 4+ H) T E[n{D t+ Dt ]I. s]
2H :PS){:“ 4+H*)
Explicit Design Variable Constraints: H=h; H2b,; Dft<h;
01=D=2m; 01=£t=01m

Or.

Substituting the given data, we obtan the final form of the constraints as

10000(1 + H*)*2nH Dt < 250 % 10°

10000(1 + H*) [ 2H £(210x10°)* (D’t + D' ) /16(1 + B
HZ35m

Hz2m

Dt < 90;

01D <2, m;

001<t<01m

H<s5m



5. A beam of rectangular cross section (Fig. 2) is subjected to a maximum bending
moment of M and a maximum shear of V. The allowable bending and shearing stresses
are o, and 7, respectively. The bending stress in the beam is calculated as

6M
G T —
bd®
and average shear stress in the beam is calculated as
3V
T=——
2bd
where d is the depth and b is the width of the beam. It is also desired that the depth of
the beam shall not exceed twice its width. Formulate the design problem for minimum
cross-sectional area using the following data: M = 140 KN- m, V = 24 kN, g, = 165
MPa, 7, =50 MPa.

le——h ——————

Fig.2 Cross section of a rectangular beam.
Solution:

Given: The equations to calculate bending and average shear stress in a beam, the constraint that the
depth of the beam will not exceed twice 1ts width, the applied moment, the applied shear force,
and the maximum allowable bending and shear stresses in the beam.

Required: It 15 desired to design a beam which minimizes cross-sectional area without yielding due
to shear or bending stresses.

Procedure: We follow the five step process to formulate the problem as an optimization problem.

Step 1: Problem Statement
Shown above

Step 2: Data and Information Collection
M=140kNm=14x%10" Necm
F=24kN=24x10° N:

0, =165 MPa = 1.65x10" N/cm?;
t .= 50 MPa= 5000 N/em’

Step 3: Definition of Desizn Variables
b =width of the beam. cm
d = depth of the beam. cm

Step 4: Optimization Criterion
Optinization criterion 1s to mimmize the cross-sectional area, and the cost function 1s defined as
Area =bd. cm®



Step 5: Formulation of Constraints
Bending Stress Constraint: 60M/bd” <0, or 6(1.4x10" Y/bd* =1 65x10°
Shear Stress Constramt: 3772bd =t , or 3(2.4x 10°)/2hd <5000

Constramt: d = Zbord —25 = 0
Explicit Design Vanable Constramts: b, d = 0

From the graph for the problem. we get the optimum solution as
b'= 108 cm d° = 21.6 e Area = 233 cm® where constraint numbers 1 and 3 are active.



6. A vegetable oil processor wishes to determine how much shortening, salad oil, and
margarine to produce to optimize the use of his current oil stock supply. At the present
time, he has 250,000 kg of soybean oil, 110,000 kg of cottonseed oil, and 2000 kg of
milk base substances. The milk base substances are required only in the production of
margarine. There are certain processing losses associated with each product; 10% for
shortening, 5% for salad oil, and no loss for margarine. The producer’s back orders
require him to produce at least 100,000 kg of shortening, 50,000 kg of salad oil, and
10,000 kg of margarine. In addition, sales forecasts indicate a strong demand for all
products in the near future. The profit per kilogram and the base stock required per
kilogram of each product are given in Table 1. Formulate the problem to maximize
profit over the next production scheduling Period.

Table 1.

Parts per kg of base stock
requirements

Product Profit per kg Soybean Cottonseed Milk base

Shortening 0.10 2 0

Salad o1l 0.08 0 0

Margarine 0.05 3 1
Solution:

Given: The curmrent supply of soybean oil, cottonseed o1l, and mulk-base substances, nulk-base
substances are required in the production of margarine only. the amount of processing loss which
occurs in shortening, salad oi1l, and margarne, the nummum production requirement of each
product, and the data shown in Table E2.18.

Required: It 15 desired to create a production schedule which will maximze profit.

Procedure: We follow the five step process to formmlate the problem as an optiumization problem.

Step 1: Problem Statement
Shown above

Step 2: Data and Information Collection
Shown above

Step 3: Definition of Design Variables
x; = shortening produced after losses. kg
x2 = salad o1l produced after losses. kg
¥z = margarine produced. kg

Step 4: Optimization Criterion
Optimization criterion 15 to maximize the profit, and the cost function is defined as
Prgfit=x1 +08x2+05x3

Step 5: Formulation of Constraints
The ingredients used cannot exceed current stocks
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Soybean Constramt: (2x, /3)(1/0.9)+(3x, /5) <250.000

Milk Base Constraint: (X3 /5) < 2000

Cottonseed Constraint: (x, /3)(1/0.9) +(x, )(1/0.95) +(x;/5) £110,000

The demand for the needs of the products to be satisfied

Explicit Design Vanable Constraints: x; 2100,000; x, 250,000; x, 210,000

Answer True or False.

e = Il

e

11.

12

13.
14.

15.

Design of a system implies specification for the design vanable values. True
All design problems have only linear inequality constramts. False
All design variables should be independent of each other as far as possible. True
If there 15 an equality constraint in the design problem. the optimum solution mmst satisfy it. True
Each optimization problem must have certain parameters called the design variables. True
A feasible design may violate equality constraints. False
A feasible design may violate “=type’ constraimnts. False
A = type” constraint expressed in the standard form 1s active at a design poant 1f 1t has zero
value there. True
The constraint set for a design problem consists of all the feasible points. True
. The number of independent equality constraints can be larger than the number of design
variables for the problem. True
The number of “= type” constramts must be less than the number of design vanables for a vahd
problem formulation. False
The feasible region for an equality constraint 1s a subset of that for the same constraint expressed
as an inequality. Trwe
Maximization of f(x) 15 equavalent to mimmuzation of 1/f(x). False
A lower munimum value for the cost function 1s obtained if more constramnts are added to the
problem formulation. False
Let £, be the minimum value for the cost function with »# design variables for a problem. If the
number of design vanables for the same problem 1s increased to, say m =2n, then f,, = [},
where f,,15 the mummum value for the cost function with m design vanables. False
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8. A cantilever beam is subjected to the point load P (kN), as shown in Fig 3.
The maximum bending moment in the beam is Pl (kN-m) and the maximum shear
is P (kN). Formulate the minimum mass design problem using a hollow circular
cross section. The material should not fail under bending stress or shear stress. The
maximum bending stress is calculated as

PI
0="—"R,
I

where | = moment of inertia of the cross section. The maximum shearing stress is
calculated as

P, . )
T=7(R +RR +R)
37

Beam P
| e &)
)
L ——
-« L(m) >
Section A-A

Fig.3 Cantilever beam.

Transcribe the problem into the standard design optimization model (also use Ro <

40 cm, Ri < 40 cm). Use the following data: P = 14 kN; L = 10 m; mass density, p =
7850 kg/m?3; allowable bending stress, o,= 165 MPa; allowable shear stress, 7, =

50 MPa.

Solution:

Given: The equations to calculate maximum bending and shearing stress in the beam_ the force
applied to the beam_ the length of the beam_ the density of the beam, the maximum values of R,
and Ry, and the allowable bending and shear stress for the beam.

Required: It 1s desired to create a beam design, as shown 1n Figure E2.23, which wall munimuize the
mass of the beam. The beam should not fail due to bending or shear at any point.

Procedure: We follow the five step process to formmlate the problem as an optimization problem.

Step 1: Problem Statement
Shown above

Step 2: Data and Information Collection
Using kg, N and cm as units
Given Data: (this data will change 1f different units are used)
P=14kN=14x10°N
L=10m= 1000 cm
o, =165 MPa=165x10" N/em?;

11



T,= 50 MPa= 5000 N/cm
p=1T7850 kg/m’® = 7.85x107 kg/em’;
Cross-sectional area of hollow tubes: A = w(R; — R?)
Moment of inertia of a hollow tube 15 I=n {R —R})/4
Maximum bending stress:
PL
o= T Eﬂ
Maximum shearing stress:
p
T=3; (RZ+R,R; +R})
In addition, 1t mmst be ensured that R, > R; which can be imposed as a constramt on the wall
thickness as t = t,,;, with ¢;, as, say 0.5 com.

Thickness: t = R, — R;
Step 3: Definition of Design Variables

Ro = outer radius of hollow tube, cm
R; = mner radius of hollow tube, cm

FORMULATION 1: Using Intermediate Variables
Step 4: Optimization Criterion
Optirmzation criterion 15 to minimize mass of hollow tube, and the cost function 1s defined as
f=pmdL

Step 5: Formulation of Constraints
g1 - bending stress should be smaller than the allowable bending stress; o < g

g, =0c—0,=0
g1 : shear stress smaller than allowable shear stress: 7 < 7,

g =T7—1, =0

g,=R_—-40=0
g, =R-40=0
g, =K,
E.=—n=

FORMULATION 2: Using only Design Variables

Step 4: Optimization Criterion
Optinization criterion 1s to minimize mass of hollow tube, and the cost function 1s defined as
f=pn(R,-R)L or
f=pnL(R;-R])=(785x10")n(1000)( R;- R )= 24.66(R,- R} ). ke
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Step 5: Formulation of Constraints

g1 : bending stress should be smaller than the allowable bending stress
g2 : shear stress smaller than allowable shear stress

Using the standard form. we get

g1 4PIR, [n(Ri-R}) <0, or 4(14x10°)(10°) R, /x(R{-R})-1.65x10" <0:0r
g1 = 1.7825x10" R, /(R3- R} ) -1.65x10* <0

g 4P(R§+Ruﬁi+ﬁf}/3n(ﬁ:—ﬁf}:: T.sor
4(1.4x10*)(R}+ R R+ R} ) [3x(R}-R})-5000<0: or

g, =5941.78( R+ R,R;+ R} ) [(R}- R} ) -5000<0

g. =R —40=1
g.=R—-40=0:
g, =—R_=0;

g, =—R=0

97 = tmin — (R:l - R} =0
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