Optimum Design - Sheet 2 - Solution Graphical Optimization

1. Solve the following problems using the graphical method by hand and a Matlab code:
a. Maximize $f\left(x_{1}, x_{2}\right)=4 x_{1} x_{2}$
subject to $x_{1}+x_{2} \leq 20$

$$
\begin{gathered}
x_{2}-x_{1} \leq 10 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Solution:

$$
\begin{aligned}
& F=4 x_{1} x_{2} ; \\
& \mathrm{g}_{1}=x_{1}+x_{2}-20 \leq 0 ; \\
& \mathrm{g}_{2}=x_{2}-x_{1}-10 \leq 0 ; \\
& \mathrm{g}_{3}=-x_{1} \leq 0 ; \\
& \mathrm{g}_{4}=-x_{2} \leq 0
\end{aligned}
$$

The optimum solution is: $x_{1}^{*}=10, x_{2}^{*}=10, F^{*}=400$
Active constraint: g_{1}.

Matlab Code

```
%Create a grid from -1 to 7 with an increment of 0.01 for the variables xl and x2
[x1, x2]=meshgrid(-1:0.5:25.0, -1:0.5:25.0);
                                    %Enter functions for the minimization problem
f=4*x1.*x2;
g1=x1+x2-20;
g2=x2-x1-10;
g3=-x1;
g4=-x2;
cla reset
axis auto sMinimum and maximum values for axes are determined
automatically
%Limits for x- and y-axes may be specified with the command
gaxis ([xmin xmax ymin ymax])
xlabel('xl'),ylabel('x2') %Specifies labels for x- and y-axes
hold on
text (16,23,'Exercise 3.5')
cvl=[[0}00]
constl=contour( }\textrm{x}1,\textrm{x}2,gl,\textrm{cvl},'\textrm{k}','LineWidth',3)
text(1.35,20,'gl')
cv11=[0.01:0.01:0.3];
cv22=[0.01:0.01:0.3];
const1=contour(x1, x2,gl,cv22, 'c');
const2=contour(x1, x2,g2,cvl,'k','Linewidth',3);
const2=contour(x1,x2,g2,cvl1, 'c');
text(1,13,'g2')
const3=contour(x1, x2,g3,cvl, 'k','Linewidth', 4);
const3=contour(x1, x2,g3,cvll, 'c');
text (23,1,'g4')
const4=contour(x1,x2,g4,cvl,' 'k','LineWidth',3);
text(0.3,23,'g3')
const4=contour(x1, x2,g4,cv22,'c');
text(1.5,2,'Feasible Region')
fv=[lllllon 250 400 700]; %Defines contours for the minimization function
fs=contour(xl,x2,f,fv,'k--'); %'k' specifies black dashed lines for function
contours
clabel(fs) %Automatically puts the contour value on the graph
hold off
%Indicates end of this plotting sequence
%Subsequent plots will appear in separate windows
```

b. Minimize $f\left(x_{1}, x_{2}\right)=5 x_{1}+10 x_{2}$ subject to $10 x_{1}+5 x_{2} \leq 50$
$5 x_{1}-5 x_{2} \geq-20$
$x_{1}, x_{2} \geq 0$

Solution:

$$
\begin{aligned}
& f=5 x_{1}+10 x_{2} ; \\
& \mathrm{g}_{1}=10 x_{1}+5 x_{2}-50 \leq 0 ; \\
& \mathrm{g}_{2}=-5 x_{1}+5 x_{2}-20 \leq 0 ; \\
& \mathrm{g}_{3}=-x_{1} \leq 0 ; \\
& \mathrm{g}_{4}=-x_{2} \leq 0
\end{aligned}
$$

The optimum solution is: $x_{1}^{*}=0, x_{2}^{*}=0, f^{*}=0$
Active constraints: g_{3} and g_{4}.

Matlab Code

\%Create a grid from -1 to 7 with an increment of 0.01 for the variables $x 1$ and $x 2$ $[\mathrm{x} 1, \mathrm{x} 2]=$ meshgrid $(-4: 0.5: 8.0,-4: 0.5: 8.0)$;
\%Enter functions for the minimization problem
$\mathrm{f}=5^{*} \mathrm{x} 1+10^{*} \mathrm{x} 2$;
$\mathrm{g} 1=10^{*} \mathrm{x} 1+5^{*} \mathrm{x} 2-50$;
$\mathrm{g} 2=-5^{*} \mathrm{x} 1+5^{*} \mathrm{x} 2-20$;
$\mathrm{g} 3=-\mathrm{x} 1$;
$\mathrm{g} 4=-\mathrm{x} 2$;
cla reset
axis auto \quad \%Minimum and maximum values for axes are determined automatically $\%$ Limits for x - and y -axes may be specified with the command \%axis ([xmin xmax ymin ymax])
xlabel('x1'), ylabel('x2')
Title ('Exercise 3.6')
hold on
$\mathrm{cv} 1=\left[\begin{array}{ll}0 & 0\end{array}\right]$;
\%retains the current plot and axes properties for all subsequent plots \%Use the "contour" command to plot constraint/minimization functions cv12 $=[0.01: 0.01: 1]$; const1 = contour($\mathrm{x} 1, \mathrm{x} 2, \mathrm{~g} 1, \mathrm{cv} 1,{ }^{\prime} \mathrm{k}$ ', 'LineWidth', 4); text(3.5,4,'g1')
const1 $=$ contour ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{~g} 1, \mathrm{cv} 12,{ }^{\prime} \mathrm{c}$ ');
const $2=$ contour ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{~g} 2, \mathrm{cv} 1$, ' k ,' 'Linewidth', 3);
const $2=$ contour $\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~g} 2, \mathrm{cv} 12,{ }^{\prime} \mathrm{c}\right.$);
text(3.5,7,'g2')
cv34-[0.01:0.01:0.2];
const $3=$ contour($\mathrm{x} 1, \mathrm{x} 2, \mathrm{~g} 3, \mathrm{cv} 1$, ' k ','Linewidth',4);
const $3=$ contour ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{~g} 3, \mathrm{cv} 34,{ }^{\prime} \mathrm{c}$ ');
text(0.25,6,'g3')
const4=contour(x1,x2,g4,cv1,'k','LineWidth',3);
text(7,0.25,'g4')
const4=contour(x1,x2,g4,cv34,'c');
text(1,2, 'Feasible Region')
$\mathrm{fv}=\left[\begin{array}{lll}-20 & 0 & 20\end{array}\right]$;
$\mathrm{fs}=$ contour($\mathrm{x} 1, \mathrm{x} 2, \mathrm{f}, \mathrm{fv},{ }^{\prime} \mathrm{k}$ '); clabel(fs)
hold off
\%Defines contours for the minimization function
$\%$ ' k ' specifies black dashed lines for function contours
\%Automatically puts the contour value on the graph
\%Indicates end of this plotting sequence
\%Subsequent plots will appear in separate windows
c. Minimize $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ subject to $x_{1}+x_{2}^{2} \leq 0$

$$
x_{1}^{2}+x_{2}^{2} \leq 9
$$

Solution:

$f=x_{1} x_{2} ;$
$\mathrm{g}_{1}=x_{1}+x_{2}^{2} \leq 0$;
$\mathrm{g}_{2}=x_{1}^{2}+x_{2}^{2}-9 \leq 0$
The optimum solution is: $x_{1}^{*} \doteq-2.5, x_{2}^{*} \doteq 1.58, f^{*} \doteq-3.95$
Active constraints: g_{1} and g_{2}.

Matlab Code

```
%Exercise 3.9
%Create a grid from -1 to 7 with an increment of 0.01 for the variables xl and x2
[x1,x2]=meshgrid(-4:0.1:4.0, -4:0.1:4.0);
%Enter functions for the minimization problem
f=x1.*x2;
g1=x1+x2.^2;
g2=x1.^2+x2.^2-9;
cla reset
axis auto %Minimum and maximum values for axes are determined
automatically
    %Limits for x- and y-axes may be specified with the command
    %axis ([xmin xmax ymin ymax])
xlabel('x1'),ylabel('x2') $Specifies labels for x- and y-axes
title('Exercise 3.9')
hold on
cv1=[\begin{array}{ll}{0}&{0}\end{array}];
cv12=[0.01:0.01:0.3];
constl=contour(x1,x2,gl,cvl,'k','LineWidth',4);
text(-0.5,0,'g1')
const1=contour (x1,x2,g1,cv12,'c');
const2=contour( }\textrm{x}1,\textrm{x}2,g2,\textrm{cvl},'\textrm{k}',''Linewidth',4)
const2=contour (x1, x2,g2,cv12,'c');
text(1,2.5,'g2')
text (0.25,0.75,'Feasible Region')
fv=[[2 -2 4 -4 6 -6}]; % &Defines contours for the minimization functio
fs=contour(x1,x2,f,fv,'k'); %'k' specifies black dashed lines for function
contours
clabel(fs) %Automatically puts the contour value on the graph
hold off %Indicates end of this plotting sequence
    %Subsequent plots will appear in separate windows
```

2. Solve the rectangular beam problem of Sheet 2 Problem 4 graphically by hand and a Matlab code for the following data: $M=80 \mathrm{kN} \cdot \mathrm{m}, V=150 \mathrm{kN}, \sigma_{a}=8 \mathrm{MPa}$, and $\tau_{a}=$ 3MPa.

Fig. 1 Cross section of a rectangular beam.

Solution:

Rewrite the formulation of Problem 2 in sheet 4
$M=80 \mathrm{kN} . \mathrm{m}=8.0 \times 10^{\circ} \mathrm{N} . \mathrm{cm} ; V=150 \mathrm{kN}=1.5 \times 10^{3} \mathrm{~N} ; \sigma_{a}=8 \mathrm{MPa}=800 \mathrm{~N} / \mathrm{cm}^{2} ; \tau_{a}=300 \mathrm{~N} / \mathrm{cm}^{2}$
Using units of Newtons and centimeters, we have: minimize $f=b d$; subject to
$\mathrm{g}_{1}: \frac{6 M}{b d^{2}}-\sigma_{a} \leq 0 ; \quad \mathrm{g}_{1}=\frac{6\left(8.0 \times 10^{6}\right)}{b d^{2}}-800 \leq 0 ;$
$\mathrm{g}_{2}: \frac{3 V}{2 b d}-\tau_{a} \leq 0 ; \mathrm{g}_{2}=\frac{3\left(1.5 \times 10^{5}\right)}{2 b d}-300 \leq 0 ;$
$\mathrm{g}_{3}=d-2 b \leq 0 ;$
$\mathrm{g}_{4}=-b \leq 0$;
$\mathrm{g}_{5}=-d \leq 0$
Optimum solution: $b^{\dagger} \doteq 24.66 \mathrm{~cm}, d^{\dagger} \doteq 49.32 \mathrm{~cm}, f^{\circ} \doteq 1216 \mathrm{~cm}^{2} ; \mathrm{g}_{1}$ (bending stress) and g_{3} (depth- ratio) constraints are active.

Matlab Code

```
%Create a grid from -10 to 70 with an increment of 0.1 for the variables xl and x2
[b,d]=meshgrid(-10:0.1:70.0, -10:0.1:70.0);
%Enter functions for the minimization problem
f=b.*d;
gl=(48*10.^6)./(b.* (d.^2))-800;
g2=(2.25*10^5)./(b.*d) -300;
g3=0.5.*d-b;
g4=-b;
g5=-d;
cla reset
axis auto
sMinimum and maximum values for axes are determined automatically
xlabel('b'),ylabel('d') %Specifies labels for x- and y-axes
title('Exercise 3.21')
hold on %retains the current plot and axes properties for all subsequent plots
sUse the "contour" command to plot constraint and minimization functions
cvl=[0 0}][\mp@code{: %Specifies two contour values
constl=contour(b,d,gl,cvl,'k','LineWidth',4);
text(50,37,'g1')
cv11=[0.01:0.05:2];
CV22=[5:2:40];
constl=contour(b,d,g1,cv22,'c');
const2=contour(b,d,g2,cvl,'k','Linewidth',4);
const2=contour (b,d,g2,cv22,'c');
text(40,23,'g2')
const3=contour(b,d,g3,cvl,'k','Linewidth', 4);
const3=contour(b,d,g3,cv11, 'c');
text (12,18,'g3')
const4=contour(b,d,g4,cvl,'k','Linewidth',4);
const4=contour(b,d,g4,cv11,'c');
text(30,3,'g5')
const5=contour(b,d,g5,cvl,'k','Linewidth', 4);
const5=contour(b,d,g5,cv11,'c');
text (2,30,'g4')
text(40,50,'Feasible Region')
fv=[1200 1500 2000]; %Defines contours for the minimization function
fs=contour(b,d,f,fv,'k'); %''k' specifies black dashed lines for function contours
clabel(fs) %Automatically puts the contour value on the graph
hold off %Indicates end of this plotting sequence
    %Subsequent plots will appear in separate windows
```

3. Solve the cantilever beam problem of Sheet 2 Problem 7 graphically by hand and a Matlab code for the following data: $P=10 \mathrm{kN} ; L=5.0 \mathrm{~m}$; modulus of elasticity, $E=$ 210 Gpa ; allowable bending stress, $\sigma_{b}=250 \mathrm{MPa}$; allowable shear stress, $\tau_{a}=90$ MPa; mass density, $\rho=7850 \mathrm{~kg} / \mathrm{m} 3 ; R_{o} \leq 20.0 \mathrm{~cm} ; R_{i} \leq 20.0 \mathrm{~cm}$.

Fig. 2 Cantilever beam.

Solution:

Using kg, N and cm as units
Given Data: (this data will change if different units are used)
$P=10 \mathrm{kN}=10^{4} \mathrm{~N}$
$L=5 \mathrm{~m}=500 \mathrm{~cm}$
$\sigma_{a}=250 \mathrm{MPa}=2.5 \times 10^{4} \mathrm{~N} / \mathrm{cm}^{2}$;
$\tau_{a}=90 \mathrm{MPa}=9000 \mathrm{~N} / \mathrm{cm}^{2}$
$\rho=7850 \mathrm{~kg} / \mathrm{m}^{3}=7.85 \times 10^{-3} \mathrm{~kg} / \mathrm{cm}^{3}$;
Cross-sectional area of hollow tubes: $A=\pi\left(R_{o}^{2}-R_{i}^{2}\right)$
Moment of inertia of a hollow tube is $I=\pi\left(R_{\circ}^{4}-R_{i}^{4}\right) / 4$
Maximum bending stress:

$$
\sigma=\frac{P L}{I} R_{0}
$$

Maximum shearing stress:

$$
\tau=\frac{V Q}{I b} ; \quad V=P ; \quad Q=\frac{2}{3}\left(R_{o}^{3}-R_{i}^{3}\right) ; \quad b=2\left(R_{o}-R_{i}\right)
$$

Substituting various quantities and simplifying the expression, we get

$$
\tau=\frac{P}{3 I}\left(R_{o}^{2}+R_{0} R_{i}+R_{i}^{2}\right)
$$

In addition, it must be ensured that $R_{o}>R_{i}$ which can be imposed as a constraint on the wall thickness as $t \geq t_{\min }$ with $t_{\min }$ as, say 0.1 cm .

Thickness: $t=R_{o}-R_{i}$

Referring to Exercise 2.23 and the given data, the problem is formulated in terms of the design variables only as follows:

$$
\begin{aligned}
& f=\left(7.85 \times 10^{-3}\right)(500) \pi\left(R_{0}^{2}-R_{\mathrm{i}}^{2}\right)=12.331\left(\mathrm{R}_{0}^{2}-\mathrm{R}_{\mathrm{i}}^{2}\right) \\
& \mathrm{g}_{1}=\frac{4 P l R_{o}}{\pi\left(R_{\circ}^{4}-R_{\mathrm{i}}^{4}\right)} \leq \sigma_{a} ; \text { or } \\
& \mathrm{g}_{1}=\frac{R_{o}\left(4.0 \times 10^{4}\right)(500)}{\pi\left(R_{o}^{4}-R_{\mathrm{i}}^{4}\right)} \leq\left(2.5 \times 10^{4}\right) ; \text { or } \\
& \mathrm{g}_{1}=\frac{R_{0} 6.3662 \times 10^{6}}{\left(R_{0}^{4}-R_{\mathrm{i}}^{4}\right)}-2.5 \times 10^{4} \leq 0
\end{aligned}
$$

$\mathrm{g}_{2}=\frac{4 P\left(R_{\mathrm{o}}^{2}+R_{\mathrm{o}} R_{\mathrm{i}}+R_{\mathrm{i}}^{2}\right)}{3 \pi\left(R_{\mathrm{o}}^{4}-R_{\mathrm{i}}^{4}\right)} \leq \tau_{a}$; or
$\mathrm{g}_{2}=\frac{\left(4.0 \times 10^{4}\right)\left(R_{\mathrm{\circ}}^{2}+R_{\mathrm{o}} R_{\mathrm{i}}+R_{\mathrm{i}}^{2}\right)}{3 \pi\left(R_{\mathrm{o}}^{4}-R_{\mathrm{i}}^{4}\right)} \leq 9000$; or
$\mathrm{g}_{2}=\frac{4244.13\left(R_{\mathrm{o}}^{2}+R_{\mathrm{o}} R_{\mathrm{i}}+R_{\mathrm{i}}^{2}\right)}{\left(R_{\mathrm{o}}^{4}-R_{\mathrm{i}}^{4}\right)}-9000 \leq 0 ;$
$\mathrm{g}_{3}=R_{\mathrm{o}}-20 \leq 0 ;$
$\mathrm{g}_{4}=R_{\mathrm{i}}-20 \leq 0 ;$
$\mathrm{g}_{5}=-R_{\mathrm{o}} \leq 0$;
$\mathrm{g}_{6}=-R_{\mathrm{i}} \leq 0$

FORMULATION 2: Using Intermediate Variables

Step 4: Optimization Criterion
Optimization criterion is to minimize mass of hollow tube, and the cost function is defined as $f=\rho A L$

Step 5: Formulation of Constraints
g_{1} : bending stress should be smaller than the allowable bending stress; $\sigma \leq \sigma_{a}$
$g_{1}=\sigma-\sigma_{a} \leq 0$
g_{2} : shear stress smaller than allowable shear stress: $\tau \leq \tau_{a}$
$g_{2}=\tau-\tau_{a} \leq 0$
$\mathrm{g}_{3}=R_{\circ}-20 \leq 0$
$\mathrm{g}_{4}=R_{\mathrm{i}}-20 \leq 0$
$\mathrm{g}_{5}=-R_{0} \leq 0$
$\mathrm{g}_{6}=-R_{\mathrm{i}} \leq 0$
$g_{7}=t_{\text {min }}-t \leq 0$

Optimum solution: $R_{\mathrm{o}}^{*}=20 \mathrm{~cm}, R_{\mathrm{i}}^{*}=19.84 \mathrm{~cm}, f^{*} \doteq 79.1 \mathrm{~kg}, \mathrm{~g}_{1}$ (bending stress) and g_{3} (max. outer radius) constraints are active.

Matlab Code

```
%Create a grid
[Ro,Ri]=meshgrid(19.9:0.001:20.05, 19.70:0.001:20.05);
sEnter functions for the minimization problem; use Newton and cm as units
P=10000; L=500; sigma_a=25000; tau_a=9000; ro=7.85/1000;
A=pi. * (Ro. *Ro-Ri. *Ri)
I=0.25.*pi.*(Ro.^4-Ri.^4)
sigma=P.*L.*Ro./I
tau=P.*(Ro.*Ro+Ro.*Ri+Ri.*Ri)./(3.*I)
t=Ro-Ri
f=ro.*A.*L
g1=sigma./sigma_a - 1
g2= tau./tau_a - 1
%f=12.331*((Ro.^2)-(Ri.^2));
%gl=Ro* (6.3662*10.^6)-(2.5*10^4)* ((Ro.^4)-(Ri.^4));
%g2=(4244.13)*(Ro. *Ro+Ri. *Ro+Ri. *Ri) -9000* (Ro.^4) .*(Ri. * 4);
g3=Ro./20 - 1;
g4=Ri./20 - 1;
g5=-Ro;
g6=-Ri;
cla reset
axis auto
%Minimum and maximum values for axes are determined automatically
```

```
title('Exercise 3.22')
```

title('Exercise 3.22')
xlabel('Outer Radius, Ro'), ylabel('Inner Radius, Ri') %Specifies labels for x-
xlabel('Outer Radius, Ro'), ylabel('Inner Radius, Ri') %Specifies labels for x-
and y-axes
and y-axes
hold on %retains the current plot and axes properties for all subsequent plots
hold on %retains the current plot and axes properties for all subsequent plots
cvl=[0 0]; %Specifies two contour values
cvl=[0 0]; %Specifies two contour values
%Use the "contour" command to plot constraint and minimization
%Use the "contour" command to plot constraint and minimization
functions
functions
constl=contour(Ro,Ri,gl,cvl,'k','LineWidth', 2);
constl=contour(Ro,Ri,gl,cvl,'k','LineWidth', 2);
cv11=[0.0:0.00001:0.001];
cv11=[0.0:0.00001:0.001];
cv22=[0.01:0.01:0.1];
cv22=[0.01:0.01:0.1];
cv33=[0.01:0.01:0.8];
cv33=[0.01:0.01:0.8];
constl=contour(Ro,Ri,gl,cv22, 'c');
constl=contour(Ro,Ri,gl,cv22, 'c');
const2=contour(Ro,Ri,g2,cvl,'k','Linewidth', 3);
const2=contour(Ro,Ri,g2,cvl,'k','Linewidth', 3);
const2=contour(Ro,Ri,g2,cv33,'c');
const2=contour(Ro,Ri,g2,cv33,'c');
const3=contour(Ro,Ri,g3,cvl,'k','Linewidth',2);
const3=contour(Ro,Ri,g3,cvl,'k','Linewidth',2);
const3=contour(Ro,Ri,g3,cvl1, 'c');
const3=contour(Ro,Ri,g3,cvl1, 'c');
const4=contour(Ro,Ri,g4,cvl,' 'k','Linewidth', 3);
const4=contour(Ro,Ri,g4,cvl,' 'k','Linewidth', 3);
const4=contour(Ro,Ri,g4,cvl1, 'c');
const4=contour(Ro,Ri,g4,cvl1, 'c');
const4=contour(Ro,Ri,g5,cvl,' 'k','Linewidth', 3);
const4=contour(Ro,Ri,g5,cvl,' 'k','Linewidth', 3);
const4=contour(Ro,Ri,g5,cvl1, 'c');
const4=contour(Ro,Ri,g5,cvl1, 'c');
const5=contour(Ro,Ri,g6,cvl,' 'k','Linewidth', 3);
const5=contour(Ro,Ri,g6,cvl,' 'k','Linewidth', 3);
const5=contour(Ro,Ri,g6,cvl1, 'c');
const5=contour(Ro,Ri,g6,cvl1, 'c');
%Label constraints
%Label constraints
text(19.95,19.78,'g1')
text(19.95,19.78,'g1')
text(19.95,19.92,'g2')
text(19.95,19.92,'g2')
text(20.005,19.9,'g3')
text(20.005,19.9,'g3')
text(19.95,20.01,'g4')
text(19.95,20.01,'g4')
text (6,0.5,'g5')
text (6,0.5,'g5')
text(19.95,19.72,'Feasible Region')
text(19.95,19.72,'Feasible Region')
fv=[60 79.1 90 100]; %Defines contours for the minimization function
fv=[60 79.1 90 100]; %Defines contours for the minimization function
fs=contour(Ro,Ri,f,fv,'k--'); %''k' specifies black dashed lines for function
fs=contour(Ro,Ri,f,fv,'k--'); %''k' specifies black dashed lines for function
contours
contours
clabel(fs) %Automatically puts the contour value on the graph
clabel(fs) %Automatically puts the contour value on the graph
hold off %Indicates end of this plotting sequence
hold off %Indicates end of this plotting sequence
%Subsequent plots will appear in separate windows

```
    %Subsequent plots will appear in separate windows
```

```
%Exercise 3.22; L=10m
sCreate a grid
[Ro,Ri]=meshgrid(19.8:0.001:20.05, 19.30:0.001:20.05);
sEnter functions for the minimization problem; use Newton and cm as units
P=10000; L=1000; sigma_a=25000; tau_a=9000; ro=7.85/1000;
A=pi.* (Ro. *Ro-Ri. *Ri)
I=0.25.*pi.*(Ro.^4-Ri.^4)
sigma=P.*L.*Ro./I
tau=P.* (Ro.*Ro+Ro.*Ri+Ri.*Ri)./(3.*I)
t=Ro-Ri
f=ro.*A.*L
gl=sigma./sigma_a - 1
g2= tau./tau_a - 1
%f=12.331*((Ro.^2)-(Ri.^2));
8gl=Ro* (6.3662*10.^6)-(2.5*10^4)* ((Ro.^4)-(Ri.^4));
%g2=(4244.13)*(Ro. *Ro+Ri. *Ro+Ri. *Ri) -9000* (Ro.^4) .*(Ri.^4);
g3=Ro./20 - 1;
g4=Ri./20 - 1;
g5=-Ro;
g6=-Ri;
cla reset
axis auto
%Minimum and maximum values for axes are determined automatically
title('Exercise 3.22 with L=1000cm')
xlabel('Outer Radius, Ro'), ylabel('Inner Radius, Ri') %Specifies labels for x-
and y-axes
hold on %retains the current plot and axes properties for all subsequent plots
cvl=[0 0]; %Specifies two contour values
                    %Use the "contour" command to plot constraint and minimization
functions
constl=contour(Ro,Ri,gl,cvl,'k','LineWidth',2);
cv11=[0.0:0.00001:0.001];
cv22=[0.01:0.01:0.1];
cv33=[0.01:0.01:0.8];
constl=contour(Ro,Ri,gl,cv22,'c');
const2=contour(Ro,Ri,g2,cvl,'k','Linewidth',3);
const2=contour(Ro,Ri,g2,cv33, 'c');
const3=contour(Ro,Ri,g3,cvl,'k','Linewidth',2);
const3=contour(Ro,Ri,g3,cvl1, 'c');
const4=contour(Ro,Ri,g4,cvl,'k','Linewidth',3);
const4=contour(Ro,Ri,g4,cvll, 'c');
const4=contour(Ro,Ri,g5,cvl,'k','Linewidth',3);
const4=contour(Ro,Ri,g5,cvl1, 'c');
const5=contour(Ro,Ri,g6,cvl,'k','Linewidth',3);
const5=contour(Ro,Ri,g6,cvl1, 'c');
%Label constraints
text(19.9,19.6,'g1')
text(19.95,19.92,'g2')
text(20.005,19.9,'g3')
text(19.95,20.01,'g4')
text(6,0.5,'g5')
text(19.9,19.4,'Feasible Region')
fv=[250 319.185 350 400 450]; %Defines contours for the minimization function
fs=contour(Ro,Ri,f,fv,'k'); %'k' specifies black dashed lines for function
contours
clabel(fs) %Automatically puts the contour value on the graph
hold off %Indicates end of this plotting sequence
    %Subsequent plots will appear in separate windows
```

