Optimum Design - Sheet 2 Graphical Optimization

- 1. Solve the following problems using the graphical method by hand and a Matlab code:
 - a. Maximize $f(x_1, x_2) = 4 x_1 x_2$ subject to $x_1 + x_2 \le 20$ $x_2 - x_1 \le 10$ $x_1, x_2 \ge 0$
 - b. Minimize $f(x_1, x_2) = 5x_1 + 10x_2$ subject to $10x_1 + 5x_2 \le 50$ $5x_1 - 5x_2 \ge -20$ $x_1, x_2 \ge 0$
 - c. Minimize $f(x_1, x_2) = x_1x_2$ subject to $x_1 + x_2^2 \le 0$ $x_1^2 + x_2^2 \le 9$
- 2. Solve the rectangular beam problem of Sheet 2 Problem 4 graphically by hand and a Matlab code for the following data: $M = 80 \text{ kN} \cdot \text{m}$, V = 150 kN, $\sigma_a = 8 \text{ MPa}$, and $\tau_a = 3 \text{MPa}$.

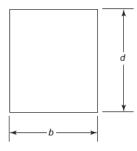


Fig.1 Cross section of a rectangular beam.

3. Solve the cantilever beam problem of Sheet 2 Problem 7 graphically by hand and a Matlab code for the following data: P = 10 kN; L = 5.0 m; modulus of elasticity, E = 210 Gpa; allowable bending stress, $\sigma_b = 250$ MPa; allowable shear stress, $\tau_a = 90$ MPa; mass density, $\rho = 7850$ kg/m3; $R_o \le 20.0$ cm; $R_i \le 20.0$ cm.

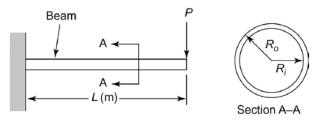


Fig.2 Cantilever beam.