Optimum Design - Sheet 4 - Solution
Optimality Conditions

1.

Write the Tavlor series expansion for the following function up to quadratic terms.

cosx about the point x* = 'Ht

Solution

f(x)=cosx; f7/4)=cos(x/4)= YN2; f '(7/4)=—sin(7/4)= —1/42;
F(7/4)=—cos(x/4)= —],ﬁ ftxj =f[_1'* :|+f'{:r* :I{x—x* }+ ll]-:':f"[f Hx—x' }2 Cos X
=(Y~2 )= (12 )(x-m/4)+05(-1/ 2 }(x—;r,.-':lf =1.0444 - 0.15175x - 0.35355x°

Write the Taylor senies expansion for the following function up to quadratic terms.
cosx about the point x" = 5"{:“3
Solution

f(x)=cosx; f{7/3)=cos(x/3)=1/2; f'(7/3)=—sin(7/3)= —ﬁ..-"'i:
F(7/3)=—cos(x/3)=-1/2: f(x)=1 |:.1" ]+ r [:r" ](x —x' }+ 'D.:?f"|:x' Hx -x* |2
cos x =(1/32 ) =(/3/2)(x - 7/3)+ 0.5(-V2) (x— 7/3)" =1.1327 -0.34243x — 0.25x>

Write the Tavlor series expansion for the following function up to quadratic terms.

. . s
siny about the point x* = s

Solution _
f(x)=sinx; f(7/6)=sin(x/6)=12; f'(7/6)=cos(x/6)= —3/2;

F(xf3)=—cos(x/3)=-12; F(x)=f(x")+(x")([x=x")+057"(x")(x-x" ]:
sinx =12 —(/3/2)(x - 7/6)+ 0.5(~1/2) (x — 7/6)’ =-0.02199+1.12783x ~0.25x°



Write the Taylor series expansion for the followmg function up to quadratic terms.

sin X about the point x* = nf-’-l—
Solution
f(x)=sinx: 7 (x/4)=sin (x/4)=1/yT: 7"(x/4) =cos (w/4)= -1/
f"(7/4)=—sin (7/4) =-1/,/2: f(x)= f{x'}+f'{x'}|::x—x' }+ﬂ.5f"::x' J(x—x" :li sin x
=1.*'\."5+[:],.-“q"§:|[.r—;‘r,-"4_}+1].5[—1..-'fﬁ:}|[x—.T_,."AI}: =(l+x—m4-x" 2+7x4-7 EE)I,.-F'JE
=[(1-7/4-7* 32)+(1+ 7 4)x—x* 2] /2 = 0.06634 +12625x - 0.35355x*

Wirite the Tavlor series expansion for the following function up to quadratic terms.
e* about the point x"=0

Solution

f(x)=&"f(x)=f'(x)=f"(x)=€"f(0)=f'(0) = f"(0) =1

F[I}=‘f{1’*] =+_;l'"’[x':}= f_x—x*]+ll5f"{r][x— .'Jr":}2

e =’ +&° (x—0)+ 056" (x—0)7 =1+ x+0.5¢

Write the Tavlor series expansion for the following function up to quadratic terms.
e*about the point x'=2

Solution

flx)=€.x" =2 f'(x)=€" fr(x) =% f(x")=1(x")=f"(x") =& =7380
F@)=f(x)+ £(x) (x=x")+0577(x) (x =)

e =7.380+7.389(x—2)+0.5(7.389) (x—2)° = 7.389 - 7.389x + 3 6045x"



Write the Taylor senies expansion for the following function up to quadratic terms.

flx,. x,) = 10x} — 20x7x, + 10x3 + x2 — 2x, + 5 about the point (1.1). Compare approximate

and exact values of the function at the point (1.2.0.8).
Solution
F(x.x,)=10x] —20x5x, +10x7 +25 —2x, +5;x" =(L 1)
i_ _ 1
Hf{11,12}= 40 41]_;’[:: +2x -2 . H(x.x,)= 120x; —40x, +2 —40x,
=20x; + 20x, —40x, 20

?{xl_,x]}=ﬂ:x‘}+ﬁf"{x'}{x—x‘)+{}5:x x Hl::x‘}::x—x‘}
7()=4 ()| o 1)< 5o ]

—40 20

?[xl,x:}=4+%{gl:ll}}:| [j:l] j[ﬂ“x —lﬂ 41 —42x, —40xx, + 20x, +10x] +15

S (1.2.08)=8.136; 7 (1.2.0.8)=7.64; Emmor=f - f =0.496



Determine the nature of the following quadratic form.
Flx) = x; +4x,x; + 23,05 — Tx3 — 6x2x; + 5x3

Solution
F(x)= xl +4xx, + 251, — ?L ﬁx113 Stf
1 2 1 1 2
=[qn x x]|2 -7 3 -l=|:2 -7 3
1 -3 5 1 -

Principal Minors: My =1=0: M2 =(-7)- {2}{2} =-11<0; M: =-60 < 0. Since M; =0, M;
< 0 and M: < 0, A 15 indefinite, 50 15 the quadratic form.

Determine the nature of the following quadratic form

F(x) = 2x] + 223 — Sxyxz
Solution

k ) 2 25| x
F(x)=23 +2x3 —5m%; =[x 19][ 25 2 }Ll}
—n 2

5 _9

A=[ 2‘ _ '25:| . Pnncipal Minors: M, =2>0; M, =-225<0
—2.5

Since M1 = 0 and Mz < 0, A is indefimite, so the quadratic form 15 indefinite.

Deternune the nature of the following quadratic form.
Flx)=x3 +x2 4 3x,x,

Solution
(x)= X +X3 +3%%, ; (note that the factor of 0.5 does not affect the form of the matrix)

1 3 1 157[x 1 157 _ _
=[m I1]|:ﬂ J[ } E I—:-]|:15 1i||:_1'3j|;‘{=|:1.5 l]" Eigenvalue problem:

1-4 15

15 1-A
The matnx and the quadratic form are indefinite since one eigenvalue 1s positive and the other

negative.

=0 (1-A)(1-A)-15 =0, =2 -125=0; &, =—05, %, =25




Determine the nature of the following quadratic form.
F(x) =x% —x3 + 4x,x,

Solution

F(x)=x'-x} +4xx, =[x, r][; _EJ {;1}

1 2
‘J“=|:«; l:|; Principal Minors: M, =1> 0; M, =-5<0

Since M) = 0 and M3 < 0, the matnx 15 indefinite and so 15 the quadratic form.

Determine the nature of the following quadratic form.
Flx) =x; —x3 +x; — 2x2%5

Solution
F(x)=x'-x+x -2xx,
1 0 0|fx 1 0 0
=[x x x]|0 -1 -1||x, [ A=/0 -1 -1
0 -1 1l|x 0 -1 1

Principal Minors: My =1>0, Mz =-1<0, M; =|a|-1(-1-1)-—2<0
Since My =0, Mz = 0 and M:s < 0, so the quadratic form is indefinite.
Determine the nature of the following quadratic form.

F(x) =x%—2x,x, + 2x3

Soluton

. 1 -1 x
FI[I}=.1'1‘ —2xx3 +l'r:22 =[I| x:] |:_1 5 i||:-'f;:|

1 -
A=[ 1 2} Principal Minors: M, =1> 0, M, =1>0

Since M1 = 0 and M3 = 0, the quadratic form is positive definite.



Determune the nature of the followmng quadratic form.
F(x)=xf —xx, —x3

Solution
1 1 -05||x
F{I]=I'|_ —1'11-2_122 =[I] I2]|:—'Dj -1 i||:l"::|

1 05
A=[_ﬂ i ) }: Principal Minors: M; =1>0. M, =-1.25<0
S -

Since Mi = 0 and Ma < 0, the quadratic form is indefinite.

Determine the nature of the following quadratic form.
F(x) =x; + 2x,x; — 2x3 + 4x3 — 2x,x,

Solution
F(x)=2x +25x; 205 + 45 - 21,1,
1 0 1]y
=|:[-T1 X -Ts]] 0 2 -ljx
1 -1 4 |ix

1 0 1
A=10 -2 -1);Principal Minors: M, =1>0.M,=-2<0M,=-7<0

1 -1 4
Since M = 0. Mz < 0 and M: < 0, the quadratic form is indefinite.

Determuine the nature of the following quadratic form.
Flx) =2xi +x,x, + 2x3 + 4x5 — 2x,x,

Solution
el 2 420
F(x)=2x +xx, +2x; +4x3 -2,

2 05 -1][x

=[x = x]]jos 2 0f|x
1 0 3|x

2 05 -1
A=105 2 0 |;Prncipal Mmors: M, =2>0, M, =375>0M,=925>0

-1 0 3
Since M) = 0, M: = 0 and M3 = 0, the quadratic form is positive definite.
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Determuine the nature of the following quadratic form.
F(x) = xf + 2x,%; + x5 + 43

Solution

F(x)=x+2ux+x5+40 =[[x x5 x]]

L= T

[ S

=
s

A:

—_ =

1 0

0 1 |;Pnncipal Minors: M| =1>0. M, =1>0M,=3>0

0 4

Since M) = 0, Mz = 0 and M; = 0, the quadratic form 1s positive definite.

Determine the nature of the following quadratic form.
Flx) =4x] 4+ 2x,x; — x3 + 4x3

Solution
4 0 1x
F(x)=4x +2xx; —x3 +4x3 =|:[.rl X3 x;]] 0 -1 0%
1 0 4)|x
4 0 1
A={0 -1 0):Pnncipal Mmors: M, =4>0, M, =-4<0M,=-15<0
1 0 4

Since M > 0, Mz < 0 and M3 < 0, the quadratic form is indefinire.



3. Write optimality conditions and find stationary points for the following functions (use
MATLAB, or Mathematica, if needed to solve the optimality conditions). Also
determine the local minimum, local maximum, and inflection points for the functions
(inflection points are those stationary points that are neither minimum nor maximum).

F(x.xy)=3x7 + 200, + 2% + 7

Solution
Flx.xy)=3x] +2xx, + 235 +7
The gradient and Hessian of f [11] are
- 6x, +2x 6 2
NFf=| ' "7*: H= :
2x, +4x, 2 4

Setting gradient to zero gives x = (0, 0) as the only candidate minimum point.
Principal Minors of the Hessian: M1=6 >0, M2=20>0. Since M1 > 0 and M3 > 0, the Hessian is
positive definite. Therefore. the point (0. 0) is a local minimum point(f =7).

flxg, %) = xF+4x,%, +x2+3

Solution
f(x.x)=x +4xx, +x; +3:

The gradient and Hessian of f(x) are

8f | 2Ix +4x, 2 4
dx |4x +21x, 4 12
Setting gradient to zero gives x = (0, 0) as the only candidate minimum point.

Eigenvalue test: ‘ H- l.I| = (2 —'}L)(E —fﬂ,)— 16=0: h, =6, b, =-2

Therefore. the Hessian 1s indefinite and second order necessary condition is violated. The stationary
point (0. 0) 1s an inflection point.



flxy,x5) = x5 + 12x,%3 + 2x3 + 5xF + 3%,

Solution

f(xl. X, )= X, +12x5x + 233 + 5% +3x,:

The gradient and Hessian of [ (x) are

of _ {Sxf +12x2 +1011:|_ oo [le +10  24x, }
Ox | 24xx,+4x,+3 24x, 24x +4

Setting the gradient to zero gives a nonlinear system of equations. Using Newton-Raphson method
or any nonlinear equation solver, we find two solutions, as

x! =(-3.332.0.0395): x"? =(-0.398. 0.5404)

gy [-9.992  0.948
H(x")= : M =-9.992 <0, M, =758.17 >0
| 0.948 -75.968 B
H(isl] is negative definite. Therefore x'l= (—3.332. 0.0395) is a local maximum point.
oy | 7612 12,970
H(s ] = : M, =7.612. M, =-210.483
[12.970 —5.552 -

is indefinite. Therefore x~ = [—D.S 98, 0.5404)1'5 an inflection point.



fx2) = 52y — x{x2/16 + X3 /4%,
Solution

f(x.5,)=5% -5 x,/16+ 23 [4x,
The gradient and Hessian of (‘KJ are

vf = S—x %, /8- 4x] - —x,[8+x2 22} —x [8-x, /2%
e a2 e

2

When Nf is set to zero the second equation gives X, =X, / 8.
Substituting into the first equation, we get
S—xy/64-x!/256=0.(5/256)x] =5 x, =+4.

For x, =4.x, =8 andx, =—4.x, =-§.

For the first point (4. §)
|- 8/8+64/2(64) -4/8-8/2(16)] [-1/2 -3/4
—4/5—8/2(16) 1/2(4) —-3/4 -1/8
M, =-1/2<0. M, =-5/8<0

Sinee H is indefinite. the second order necessary condition is vielated. Thus. point (4. 8) is an
inflection point.

For the second point (-4, — g).
- {— (-8)/8+64/2(-64) —(-4)/8-(- 8)..-"2(16]} _ {1,12 3/4 }
- (-4)/8~-(-8)/2(16) 1/2(-4) 34 -1/8
M, =1/2>0.M, =-5/8<0

Since H 1s indefinite. the second order necessary condition is violated. Thus. point (-4 —8) 1s an
inflection point.
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f(x) =cosx

Solution

f(x) =CO5 X

The necessary condition gives f( Jr) =—sinx=0

The solution of necessary condition gives: x=nm.n=0. £1. £2_...
f(x)=—cosx; Forx=02n+1jn.n=0.%1.+2

F'(x)=—cos [[311 + I)TE] =1=0.

Thus. x=(2n+1)r.n=0+1+2_ __ are local minimum points ( £ =-1).
For x=2nm.n=0, £1, £2. ... f"(x)=—cos (2n1)=-1<0.
Thus, x =2nm. n=0. £1. £2. __ .are local maximum points { £ =1).

fxyx2) = X3 + x1xp + X3

Solution

2 2
flx.x,)=xt+xx,+
The gradient and Hessian of #(x)are

Flf I +x, | - 201
Tix+2x, | |1 o2]

Solution of necessary conditions of N7 =0 gives X =(0, 0). The Hessian at x~ is positive

definite since M1 =2 >0 and M2 =3 > 0. Thus (0. 0) 1s a local minimum point ( f =0).

flx) =x%*
Solution
flx)=xe™
- 7 _ . .
The necessary conditions gives f'(l'] =xe” —xe =0.or 2x—x*=0.
Therefore. x = 0. 2 are the stationary points.
fr(x)=2e7 —2xe™ —2xe " +x’e =(x" —4x+2)e”
f”{l:]]

f"(l) =—0.27067 < 0. Therefore, x =2 is a local maximum point. £* = 0.541.

2 > 0. Therefore, x = 0 is a local minimum point. £* =0,
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fleg,xg) = x; +10/(xy22) + 5x,

Solution
. x,) =% +10/(xx, )+ 5x,
The necessary condition gives:
- i.2 . .2\, =z 2 2
of fax, =1-10/(x}x, )= 0: &f fax, =-10/(x,x2 )+ 5=0: or x7x, =10. Sxx} =10
These equations give x, =5x,. Substituting the equation. we obtain »,=0.7368. Therefore. x*

=(3.684. 0.7368) is a stationary point. Hessian is given as

H(x') = 20/(-‘5-‘2) 1”/(112-‘22] | H_[0.5429 1.357:} M, =0.5420 > 0
10/(:{1.‘(1) 20/(:(1::1]

Since Hessian is positive definite, x” = (3.684. 0.7368) is a local minimum point ( £ =11.0521).

1.3572 13572 M, =5.526>0

flxg, ) =x2—2x, +4x2—8x, +6

Solution

f(x,.xg)z:cf —2x, +4x; —8x, +6

The gradient and Hessian are given as

. [2x, -2 2 0

Nf = . H= :
8x,—8 0 8

Solution of N =0 gives X = (L 1). For the Hessian H, M1 =2> 0, M2 =16 > 0: so it is positive
definite. and (1.1) 1s a local minimum point( £ = 1).

f(xy,x5) = 3xf — 2x,x, + 5x% + 8x,
Solution

flx,x,)=3x] —2x,x, +5x; +8x,

The gradient and Hessian are given as

ﬂf— 6x; —2x,  H- 6 2
| —2x +10x, + 8] =2 10

Solution of Nf =0 gives X = {—3/?. —6/7). For the Hessian, M1=6> 0, M2 =56 > 0, so it is

24
positive detmite, and the point (— 2/7,—6/7 ) 1s a local minimum point (f= —?) :
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flxy,x,) = x2 + 2x3 — 4x; — 2x,%,

Solution
,
f(.1y) =2 +2x3 —4x, - 2x,%,

The gradient and Hessian are given as

. 2 —4-2x, 2 2
4x, - 2x; 2 4
Solution of N =0 gives x" =(8,4). For the Hessian H, M1 =2 > 0. M2 =4 > 0: so it is positive

definite. and (8, 4) is a local minimum point( f = 0).

flxg,xs) = 12xF +22x5 — 1.5x; — x5

Solution
f(:q.xg)zﬂxf +22x; —1.5x, - x,

The gradient and Hessian are given as
oo @ g [P o]
44x, -1 0 44
Solution of NF =0 gives x° =({].?S= ﬁ] For the Hesstan H. M; =2>0,M; =88 > 0: so 1t 1s

1
positive definite, and (0-75, a] 1s a local mimimum point( f = 5.6136).

flxy,xs) =7xf +12x3 — xy

Solution
f(3.3,)=Tx +12x) —x,

The gradient and Hessian are given as

R s NI
/= 24x, | 7 o 24)

Solution of N7 =0 gives x’ =(ﬁ ﬂ]. For the Hessian H. M1 =14 >0, M2 =336 > 0; so 1t 15

|
positive definite. and (ﬁ UJ is a local minimum point( f = —0.035714).

13



flxg,x5) = 12x3 + 21x3 — x>

Solution
f(x.x5)= 12x] +21x; - x,

The gradient and Hessian are given as

.. 12x 12 0
Nf = ' H= .
4 szz - 1} { 0 42}

Solution of N7 =0 gives x’ =(D, 4—2} For the Hessian H. M1 =12> 0, M2 =504 > 0: so it 15

1
positive definite, and [ﬂ, E] is a local minimum point( /' = —0.0119).

f(xy, %) = 25x% + 20x2 — 2x;, — x,

Solution
f(%.%,)=25% +20x3 - 23— x,
The gradient and Hessian are given as
50x, — 2 50 0
Nf = .' H-= .
40x, -1 0 40
Solution of NF =0 gives x’ =£ii) . For the Hessian H. My = 50 > 0, M, = 2000 > 0; so it 1s

25 40

1 1
positive definite, and (5 E] 1s a local minimum point( f = —0.0525).

fxg x5, x3) = x2 +2x2 + 2x2 + 2x,x, + 2x,%5

Solution
5 7 5
Fx.3.3) =5 +2x5 + 255 +2xx, + 25,

The gradient and Hessian are given as

2x + 2x, 2 2 0
Nf=|4x, +2x+2x;|: H=|2 4 2
4x, + 2x, 0 2 4

Solution of Nf =0 gives x* =(0,0,0). For the Hessian H, M1 =2 >0, M2 =24 > 0: so it is positive
detinite, and (0,0, 0) 1is a local minimum pont( ' = 0).
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f(x1,x2) = 8x] +8x3 — 80,/x{ + x7 — 20x, + 100 — 80,/ x] + x5 + 20x, + 100 — 5x; — 5%

Solution

F(%.%,) =8x +8x7 —80\/x] +x7 —20x, +100 ~80/x7 + x7 +20x, +100 — 5x, — 5x,
The gradient 1s given as

1
—80x,(x; +x; +20x, +10) 2 =5

ol

; 16x, —80%,(x; +x; —20x, +10)
Ny =

—

)
16x, —40(2x, =20 [ X7 +x] —20x, +10) 2 —40(2x, + 20> +x3 +20x, +10) 2 =5

Solution of N =0 and the hessian would be solved numerically using a program such as
Mathematica or MATLAB.

fxg,x,) = 952 4+ 9x2 — 100\/x2 + x2 — 20x, + 100 — 64./x2 + x2 + 16x, + 64 — 5x, — 41x,

Solution

F(x%.%,) = 957 +9x2 ~1004x + 27 —20x, +100 — 64y + 2 +20x, +100 — 53, — 41x,: The
gradient is given as

1
) 18, —100x,(x] +x] —20x, +10) 2 —64x,(x] + 3 +20x, +10)
Nf = )

|J|'—'

—2

1 1 :
18x, —50(2x, =20 ] +x3 —20x, +10) 2 =32(2x, + 20 fx] +x3 +20x, +10) > =41

Solution of N = 0 and the hessian would be solved numerically using a program such as
Mathematica or MATLAB.

flxnxz) = 100(xz — x3)% + (1 — x,)?
Solution
f(x, .x, ) =100(x, - xlj )3 +(1- x;) : The gradient is given as
f = —400x,( X, — X, )—2+2x :
200(x, —x; )

Solution of N7 =0 and the hessian would be solved numerically using a program such as
Mathematica or MATLAB.
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