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Lecture 2 – Problem Formulation
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Design of a can - Summary
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(πD2/4)H ≥ 400 (cm3) 

3.5 ≤ D

8 ≤ H 

D ≤  8

H ≤ 18

Min f(D,H) = πD2 /2 + πDH  (cm2)

Subject to:
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The importance of properly formulating a design optimization

problem must be stressed because the optimum solution will be

only as good as the formulation. For example, if we forget to

include a critical constraint in the formulation, the optimum

solution will most likely violate it. Also, if we have too many

constraints, or if they are inconsistent, there may be no solution

for the problem. However, once the problem is properly

formulated, good software

is usually available to solve it.

It is important to note that the process of developing a proper

formulation for optimum design of practical problems is iterative

in itself. Several iterations usually are needed to revise the

formulation before an acceptable one is finalized.

Problem Formulation



Standard Design 
Optimzation Model
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Design Variables

Objective function

Constraints



Min Weight Column
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Step 1. Describe problem

Separate into one-line phrases

Min mass tubular column

Length l

Supports load P

No buckling

No overstressing

“fixed” end-conditon



Min Weight Column
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Step 2. Collect info

Diagram, handbooks, notes
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Min Weight Column
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Step 3. Define DVs

“Form” which influences behavior

Name, symbol, units

],[].[ 21 tRxx x

Name Radius Thickness

Symbol R t

Units inches Inches



Min Weight Column
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Step 4. Determine objective function

performance criterion, f(DVs)

lRtfMIN )2()( x



Min Weight Column
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Step 5. Formulate constraints

Laws of nature, man, economics

Failure modes
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Min Weight Column - Summary
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lRtfMIN )2()( x

Subject to:
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How many equality or inequality eqns?



Design of a Cantilever Beam
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Design of a Cantilever Beam
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Step 1. Describe problem (restate w/bullets)
• hollow square cross- section

• load of 20 kN at its end

• The beam, made of steel, is 2 m Long

• the material should not fail under the action of the load

• deflection of the free end should be no more than1 cm. 

• The width-to-thickness ratio for the beam should be no 

more than 8 to avoid local buckling of the walls.

• A minimum-mass beam is desired. The width and 

thickness of the beam must be within the following 

limits:



Design of a Cantilever Beam
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Step 2. Data and Information Collection
The information needed for this problem includes 

expressions for bending and shear stresses, and the 

expression for the deflection of the free end.



Design of a Cantilever Beam
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Step 3. Define DVs



Design of a Cantilever Beam
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Step 4. Determine objective function 
• The objective is to design a minimum-mass cantilever 

beam. Since the mass is proportional to the cross-

sectional area of the beam, the objective function for the 

problem is taken as the cross-sectional area which is to 

be minimized:



Design of a Cantilever Beam
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Step 5. Formulate constraints



Design of a Cantilever Beam
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Step 5. Formulate constraints



Design Variables
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• Generally, the design variables should be independent 

of each other. If they are not, there must be some 

equality constraints between them (explained later).

• A minimum number of design variables is required to 

properly formulate a design optimization problem.

• As many independent parameters as possible should 

be designated as design variables at the problem 

formulation phase. Later on, some of these variables 

can be assigned fixed numerical values.

• A numerical value should be given to each identified 

design variable to determine if a trial design of the 

system is specified.



Optimization Criterion
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There can be many feasible designs for a system, and 

some are better than others. The question is how do we 

quantify this statement and designate a design as better 

than another. For this, we must have a criterion that 

associates a number with each design. This way, the

merit of a given design is specified. The criterion must be a 

scalar function whose numerical value can be obtained 

once a design is specified; that is, it must be a function of 

the design variable vector x. Such a criterion is usually 

called an objective function for the optimum design

problem, and it needs to be maximized or minimized 

depending on problem requirements.



Optimization Criterion
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It is emphasized that a valid objective function

must be influenced directly or indirectly by the variables of 

the design problem; otherwise, it is not a

meaningful objective function.

The selection of a proper objective function is an important 

decision in the design process.

Some common objective functions are cost



Optimization Criterion
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Some common objective functions are

• cost (to be minimized)

• profit (to be maximized)

• weight (to be minimized)

• energy expenditure (to be minimized)

• ride quality of a vehicle (to be maximized).



Optimization Criterion
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In many situations, an obvious objective function can be 

identified. For example, we always want to minimize the cost of 

manufacturing goods or maximize return on investment. In some 

situation

ns, two or more objective functions may be identified. For 

example,

we may want to minimize the weight of a structure and at the 

same time minimize the deflection or stress at a certain point. 

These are called multi-objective design optimization problems

For some design problems, it is not obvious what the objective 

function should be or how it should be expressed in terms of the 

design variables. Some insight and experience may be needed 

to identify a proper objective function for a particular design 

problem.



Optimization Criterion
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For example, consider the optimization of a passenger car. 

What are the design variables? What is the objective 

function, and what is its functional form in terms of the 

design variables? 

This is a practical design problem that is quite complex. 

Usually, such problems are divided into several smaller 

subproblems and each one is formulated as an optimum 

design problem. 

For example, design of a passenger car can be divided into 

a number of optimization subproblems involving the trunk 

lid, doors, side panels, roof, seats, suspension system, 

transmission system, chassis, hood, power plant, bumpers, 

and so on. Each subproblem is now manageable

and can be formulated as an optimum design problem.



Constrains
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Most realistic systems must be designed and fabricated 

with the given resources and must meet performance 

requirements. For example, structural members should not 

fail under normal operating loads. The natural frequencies 

of a structure must be different from the operating

frequency of the machine it supports; otherwise, resonance 

can occur and cause catastrophic failure. Members must fit 

into the available space, and so on.

These constraints, as well as others, must depend on the 

design variables, since only then do their values change 

with different trial designs; that is, a meaningful constraint 

must be a function of at least one design variable.



Constrains
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Linear and Nonlinear Constraints
Many constraint functions have only first-order terms in 

design variables. These are called linear constraints. 

Linear-programming problems have only linear constraints 

and objective functions.

More general problems have nonlinear objective function 

and/or constraint functions. These are called nonlinear-

programming problems.



Constrains
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Feasible Design
The design of a system is a set of numerical values 

assigned to the design variables (ie, a particular design 

variable vector x). Even if this design is absurd (eg, 

negative radius) or inadequate in terms of its function, it 

can still be called a design. Clearly, some designs

are useful and others are not. A design meeting all 

requirements is called a feasible design (acceptable or 

workable). An infeasible design (unacceptable) does not 

meet one or more of the requirements.



Constrains
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Equality and Inequality Constraints
Design problems may have equality as well as inequality 

constraints. The problem description should be studied 

carefully to determine which requirements need to be 

formulated as equalities and which ones as inequalities. 

For example, a machine component may be required to 

move precisely by Δ to perform the desired operation, so 

we must treat this as an equality constraint. A feasible 

design must satisfy precisely all equality constraints. Also,

most design problems have inequality constraints.



Constrains
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Equality and Inequality Constraints
To illustrate the difference between equality and inequality constraints, we 

consider a constraint written in both equality and inequality forms. Fig. shows 

the equality constraint x1 = x2. Feasible designs with respect to the constraint 

must lie on the straight line A–B. 

However, if the constraint is written as an inequality x1 ≤ x2, the feasible region 

is much larger, as shown in Fig. Any point on the line A–B or above it gives a 

feasible design.



Satisfy an equality constraint?
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An equality constraint is satisfied iff 

For example, let



Satisfy an inequality constraint
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An inequality constraint is satisfied iff 0)( xg , 

 i.e. when either 0)( xg  or 0)( xg .  
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When g(x) < 0 the constraint is said to be 

INACTIVE or NONBINDING 



Active inequality constraint
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Case B: 0)( xg  
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When g(x) = 0 the constraint is said to be 

ACTIVE or BINDING 



Violated inequality constraint
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Case C: 0)( xg  
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When g(x) > 0, the constraint is VIOLATED 



Constraint Activity/Condition
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Constraint Type Satisfied Violated 

Equality 0)( xh  0)( xh  

Inequality 
inactive0)( xg   
active0)( xg  

0)( xg  

 



Feasible Design
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The design of a system is a set of numerical values 

assigned to the design variables (ie, a particular design 

variable vector x). Even if this design is absurd (eg, 

negative radius) or inadequate in terms of its function, it 

can still be called a design. Clearly, some designs

are useful and others are not. A design meeting all 

requirements is called a feasible design (acceptable or 

workable). An infeasible design (unacceptable) does not 

meet one or more of the requirements.



Feasible Designs 
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feasible design region (i.e. feasible design space) – the set of points 

in the design space that satisfies all constraints.

feasible region = feasible design space

feasible design - A design candidate that meets design 

specifications and/or satisfies design constraints. 

feasible design - a point in the design space that satisfies 

all constraints.

When a point violates any constraint it is said to be INFEASIBLE.



Feasible Designs 
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