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Governing Equations

Consider the steady flow of a fluid through a duct such as a nozzle, diffuser, or some other
flow passage where the flow takes place adiabatically and with no shaft or electrical work,
as shown in Fig

Assuming the fluid experiences little or no change in its elevation

Ein — Eml‘r

% V3
h‘l + 7 = h.2 + 7

oy = hoy



Governing Equations

When the fluid is approximated as an ideal gas with constant specific heats, its enthalpy
can be replaced by
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Governing Equations

Then the energy balance for a single-stream, steady-flow device can be expressed as

Ein — Eout

{in + Win + (hﬂl + S:l) — Yout T w T (hDZ + 2:2}

out

where

he = C,T,

(Gin = Gow) T Wy, = Wou) = (L — 1) + 82, — 2)



Speed of sound

An important parameter in the study of compressible flow is the speed of
sound c
For an ideal gas it simplifies to

dP
c = |— =VKkRT
\ 4P

where k is the specific heat ratio of the gas and R is the specific gas constant. The
ratio of the speed of the flow to the speed of sound is the dimensionless Mach
number M

During fluid flow through many devices such as nozzles, diffusers, and
turbine blade passages, flow quantities vary primarily in the flow direction
only, and the flow can be approximated as one-dimensional isentropic flow
with good accuracy.



Example Gas Flow through a Converging—Diverging Duct

Carbon dioxide flows steadily through a varying cross-sectional area duct
such as a nozzle shown in Fig. 12-6 at a mass flow rate of 3.00 kg/s. The
carbon dioxide enters the duct at a pressure of 1400 kPa and 200°C with
a low velocity, and it expands in the nozzle to an exit pressure of 200 kPa.
The duct is designed so that the flow can be approximated as isentropic.
Determine the density, velocity, flow area, and Mach number at each loca-
tion along the duct that corresponds to an overall pressure drop of 200 kPa.
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Example Gas Flow through a Converging—Diverging Duct

SOLUTION Carbon dioxide enters a varying cross-sectional area duct at
specified conditions. The flow properties are to be determined along the duct.

Assumptions 1 Carbon dioxide is an ideal gas with constant specific heats
at room temperature. 2 Flow through the duct is steady, one-dimensional,
and isentropic.

Properties For simplicity we use ¢, = 0.846 kJ/kg-K and k = 1.289 throughout
the calculations, which are the constant-pressure specific heat and specific
heat ratio values of carbon dioxide at room temperature. The gas constant of
carbon dioxide is R = 0.1889 kJ/kg-K.

Analysis We note that the inlet temperature is nearly equal to the stagna-
tion temperature since the inlet velocity is small. The flow is isentropic, and
thus the stagnation temperature and pressure throughout the duct remain
constant. Therefore,

T,=T, = 200°C = 473K
and
P, = P, = 1400 kPa



Example Gas Flow through a Converging—Diverging Duct

To illustrate the solution procedure, we calculate the desired properties

at the location where the pressure is 1200 kPa, the first location that cor-
responds to a pressure drop of 200 kPa.

From Eq. 12-5,
(P )(ﬂ—l}”f (1200 kpa){l.ESQ—l)H.ZSQ
I'=Ty\ 5 = W3 K)| ——— = 457K
"\ P, 73 B\ 1200 kpa
From Eq. 12-4,
V=\2,T, — T)

| 1000 m?/s’
_ \/ 2(0.846 kl/kg-K)(473 K — 457 K)( . )

1 kJ/kg
= 164.5 m/s = 164 m/s
From the ideal-gas relation,

P 1200 kPa

=— = = 13.9 kg/m®
P = RT ™ (0.1889 kPa-m¥/ke-K)(457 K) S




Example Gas Flow through a Converging—Diverging Duct

From the mass flow rate relation,
s 1 _ 3.00 kg/s
pV  (13.9 kg/m’)(164.5 m/s)
From Eqgs. 12-11 and 12-12,

= 13.1 X 107*m? = 13.1 cm?

1000 m?/s>
¢ = VRT = \/ (1.289)(0.1889 kl/kg-K)(457 K)( : kj?;( : ) = 333.6 m/s
4.5
Ma — E 1645 m/s 0.493

¢ 3336m/s
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Variation of fluid properties in flow direction in the duct described in Example 12-2
for m = 3 kg/s = constant

P, kPa T. K V. m/s p, kg/m?3 c, m/s A, cm? Ma
1400 473 0] 15.7 339.4 00 0
1200 457 164.5 13.9 333.6 13.1 0.493
1000 439 240.7 12.1 326.9 10.3 0.736
800 417 306.6 10.1 318.8 9.64 0.962
767" 413 317.2 9.82 317.2 9.63 1.000
600 391 371.4 8.12 308.7 10.0 1.203
400 357 441.9 5.93 295.0 11.5 1.498
200 306 530.9 3.46 272.9 16.3 1.946



Variation of Fluid Velocity with Flow Area

We will study couplings among the velocity, density, and flow areas for
isentropic duct flow.
Consider the mass balance for a steady-flow process:

m = pAV
Differentiating and dividing the resultant equation by the mass flow rate,
we obtain

dp dA dV
+ + =0
P A vV
Consider the conservation of Energy for a steady isentropic flow process,
and by Neglecting the potential energy, the energy balance for an

isentropic flow with no work interactions is expressed:

byt p, 2
Lo 720 9
VZ

h + - = const.
Differentiate dh+VdV =20



Variation of Fluid Velocity with Flow Area

The Second law of thermodynamic:
T ds =dh—vdP
For isentropic flow ds = 0,

1
dh = v dP = E dP
Substitute inEqdh +V dV =0

dP
—4+1VdV =0
P
Combine with Eq and rearrange
dA dP (1 dp
A p \vz dp

dA  dP dp
= 1-V2—=
A pV? dP

dP



Variation of Fluid Velocity with Flow Area

dA dP
A pV?
This is an important relation for isentropic flow in ducts since it describes
the variation of pressure with flow area. We note that A, r, and V are positive
quantities. For subsonic flow (M <1), the term 1 — M? is positive; and
thus dA and dP must have the same sign. That is, the pressure of the fluid
must increase as the flow area of the duct increases and must decrease as the
flow area of the duct decreases. Thus, at subsonic velocities, the pressure
decreases in converging ducts (subsonic nozzles) and increases in diverging
ducts (subsonic diffusers).
In supersonic flow (M >1), the term 1 — M? is negative, and thus dA
and dP must have opposite signs. That is, the pressure of the fluid must
increase as the flow area of the duct decreases and must decrease as the
flow area of the duct increases. Thus, at supersonic velocities, the pressure
decreases in diverging ducts (supersonic nozzles) and increases in converging
ducts (supersonic diffusers).

(1-M?)



Variation of Fluid Velocity with Flow Area

Another important relation for the isentropic flow of a fluid is obtained by

substituting pV = — i

av

dA dv
— = —7(1 — M?)

A

This equation governs the shape of a nozzle or a diffuser in subsonic or

supersonic isentropic flow. Noting that A and V are positive quantities, we
conclude the following:

For subsonic flow (Ma < 1), % <0
: dA
For supersonic flow (M > 1), —<0



Property Relations for Isentropic Flow
of Ideal Gases

~ Pincreases
V decreases

Vincreases

. p Increases

subszonic nozzle subszonic diffuser

{a) Subsonic flow

Vincreases

P increases T
Ma>1 | V decreases

p Increases

Supersonic nozzle supersonic diffuser

(b} Supersonic flow



The temperaturs T of an ideal gas anywhere in the flow iz related to the
stagnation tempearaturs T}, through Eq. 12—

T,:,=T+E
Ecé,
or
T 2
242
T Er:éjT

Noting that ¢, = kRAE — 1), ot = ERT, and Ma = Vie, we see that
P (E (D)
2,7 ARRMGE— LT N 2 Je&  \ 2 S
substitation yields

T E—1
21+ ( 7 )Maz {12-18)

which is the desired relation between T, and T
The ratio of the stagnation to static pressure is obtained by substituting
Eq. 12-1%8 into Eq. 12-5;

PD o 1) ]H{.E—l)
— =1+ Ml 12-19
2 l ( 5 a ( J]

The ratio of the stagnation to static density iz obtained by substituting
Eq. 12-18 into Eq. 12-6;

F—1 k=12
fo_ ll + ( 2 )Me@] {12-20)
fa]




FIGURE 12-12

When Ma, = 1, the properties a the
nozzle threat are the critical
propertisas,

MNumerical values of T/, FIF,, and pfpoy are listed veraus the Mach number
in Table A-13 for &k = 1.4, which are very ugeful for practical comprassible
flow caleulations involving air.,

The propeartizs of a fluid at a location where the Mach mamber is unity (the
throat) are called critical properties, and the ratios in BEqgs. (12-12) through
(12—20% are called critical ratios when Ma = 1 (Fig, 12-12), It iz standard
practice in the analyziz of comprassible flow to let the superscript asterisk (%)
repragent the critical values, =etting Ma = 1 in Egs. 12-18 through 12-20
yields

? = P (12-21)

u]

I# vl )Fa'l:k—lil

- = (12-22)

YT

.l':'* yl k=1

P_ = (k n 1) (1223
u]

These ratiog are evaluated for wvarious values of & and are listed in
Table 12-2. The critical properties of comprassible flow should not be con-
fiusad with the thermodynamic properties of substances at the crifical point
(such as the critical temperature T and critical prassura ).

19
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TABLE A-13

One-dimensional isentropic compressible flow functions for an ideal

oas with k = 1.4

Ia Ma* A4 FiFy alag TiT,

0 0 % 1.0000  1.0000 10000
0.1 01094 58218 09930 09950 09980
02 02182 29635 09725 09803 09921
03 03257 20351 09395 09564 09823
0.4 04313 1.5901  0.8956 09243  0.9690
0.5  0.5345 13398 0.8430 08852 09524
0.6 06348 1.1882  0.7840  0.8405 09328
07 07318 1.0944 07209 07916 09107
0.8 08251 1.0382 06560 07400  0.B865
0.9 09146 1.0089  0.5913 06870 08606
1.0 1.0000 1.0000 05283 06339 (08333
1.2 1.1583 1.0304  0.4124 05311 07764
14  1.2999 1.1149  0.2142 04374 07184
16  1.4254 1.2502  0.2353 03557  0.66l4
1.8  1.5380 1.4390  0.1740 02868  0.6068
2.0 16330 1.6875  0,1278 02300  0.5556
22 17179 20050 00935 01841 05081
24 17922 24031 00884 01472 0.4647
26 18571 28960 00501 01179 04252
2.8 19140 35001 00368 00946 03894
30 1.9640 42346 00272 007680 03571
50 22381 25.000 0.001% 00113 01667
= 2.2495 = 0 0 0

20



k-+1
Ma* = Ma
2 + (k — DMa?

k_l ) 05(k+1Yk—1)
KH 1)( 2 Maﬂ

TABLE A-13

Dne-dimensional isentropic compressible flow functions for an ideal

Compressible flow functions
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Property Relations for Isentropic Flow
of Ideal Gases

TABLE 12-2

The critical-pressure, critical-temperature, and critical-density ratios for
isentropic flow of some ideal gases

Superheated Hot products Monatomic
steam, of combustion, Alr, JASES,
k=13 k=133 k=14 k= 1667
= S
% 0.5457 0.5404 0.5283 0.4871
0
i
= 0.86%96 0.85384 0.8333 0.7499
o]
p*
o 0.6276 0.6295 0.6340 0.6495
0

22



ISENTROPIC FLOW THROUGH NOZZLES

The effect of back pressure on the pressure distribution along a
converging nozzle:

pressure )

{Pb for P, = P*
P*  for P, < P*

Lowest exit —— P, < P?
pressure




ISENTROPIC FLOW THROUGH NOZZLES

Under steady-ﬂow_ conditions, the mass flow rate through the nozzle is
constant and is expressed as

2 k
W= pAV = (E)Aav[avmn — PAMay | o

Solving for T from Eq. 12—-18 and for P from Eq. 12-19 and substituting,
AMaP \V k/(RT,)

T T k= DMay2] @+ DEE-T]

(12-24)

k 5 O\ DRG]
mmax - A*PO
RT,\k + 1



ISENTROPIC FLOW THROUGH NOZZLES

The effect of back pressure P, on the mass flow rate m and the exit pressure
P, of a converging nozzle.
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ISENTROPIC FLOW THROUGH NOZZLES

The variation of the mass flow rate through a nozzle with inlet stagnation
properties.

——— Ma,=1 ——}—Ma, <1 —|
A

Increase in PO,

decrease in TO,
or both

P, T,

Decrease in Po ,

increase in TO,
or both

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F

*
f—
=

P
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A relation for the vanation of flow area A through the nozzle relative to
throat area A* can be obtained by combining Eqs. 12-24 and 12-25 for the
same mass flow rate and stagnation properties of a particular flmd. This vields

A 1 2 F— 1 (k+ 1020k = 1))
A% MaKk N 1><1 T To Mﬂﬂ (12-26)

Table A—13 gives values of 4/4% as a function of the Mach number for air
(k = 1.4). There 1s one value of A/A¥* for each value of the Mach number,
but there are two possible values of the Mach number for each value of
A/A%*—one for subsonic flow and another for supersonic flow,

Another parameter sometimes used in the analysis of one-dimensional
isentropic flow of ideal gases is Ma*, which is the ratio of the local velocity
to the speed of sound at the throat:

v
Ma* = — (12-27)
ok

Equation 12-27 can also be expressed as

V:::_Mac Ma\fkR I

¥ - ——
Ma ¢ ¥ ok
k+ 1
Ma* = M 12-28
§ a\/z bk — DMa? (12-28)



Example: Effect of Back Pressure on Mass Flow
Rate

EXAMPLE 12-4 Effect of Back Pressure on Mass Flow Rate

Air at 1 MPa and 600°C enters a converging nozzle, shown in Fig. 12-18,
with a velocity of 150 m/s. Determine the mass flow rate through the nozzle
for a nozzle throat area of 50 cm?# when the back pressure is (a) 0.7 MPa

and (b 0.4 MPa.

28



Example: Effect of Back Pressure on Mass Flow
Rate

SOLUTION  Air enters a converging nozzle. The mass flow rate of air through
the nozzle is to be determined for different back pressures,

Assumptions 1 Air is an ideal gas with constant specific heats at room tem-
perature. 2 Flow through the nozzle is steady, one-dimensional, and isentropic.
Properties The constant pressure specific heat and the specific heat ratio of
air are ¢, = 1.005 klikg-K and k = 1.4,

Analysis We use the subscripts 7 and f to represent the properties at the
nozzle inlet and the throat, respectively. The stagnation temperature and
pressure at the nozzle inlet are determined from Egs. 12-4 and 12-5;

SO S (1 i ( ke )—8841{
T 2, 2(1.005 kIfkg K '\ 1000 mt/s?
TU:’ EHik—1) 881 K 1.4451.4-1)
P, = PE<?) = (1 MPa)(m) = 1.045 MPa

These stagnation temperature and pressure values remain constant through-
out the nozzle since the flow is assumed to be isentropic. That is,

T,=T,=84K and P =P, = 1045MPa



o]

k

+1

S~ Do v R

1
Ma

(

+

k—1
2

2+ (k — 1)Ma?

2 k _ 1 ) 05k+1)WE—1)
1+ "M
k+ 1)( 7 a)]

kK —1)
Maz)

—Uk—1)
7Ma2)

TABLE A-13

One-dimensional isentropic compressible flow functions for an ideal

oas with k = 1.4

Ia Ma* A4 FiFy alag TiT,

0 0 % 1.0000  1.0000 10000
0.1 01094 58218 09930 09950 09980
02 02182 29635 09725 09803 09921
03 03257 20351 09395 09564 09823
0.4 04313 1.5901  0.8956 09243  0.9690
0.5  0.5345 13398 0.8430 08852 09524
0.6 06348 1.1882  0.7840  0.8405 09328
07 07318 1.0944 07209 07916 09107
0.8 08251 1.0382 06560 07400  0.B865
0.9 09146 1.0089  0.5913 06870 08606
1.0 1.0000 1.0000 05283 06339 (08333
1.2 1.1583 1.0304  0.4124 05311 07764
14  1.2999 1.1149  0.2142 04374 07184
16  1.4254 1.2502  0.2353 03557  0.66l4
1.8  1.5380 1.4390  0.1740 02868  0.6068
2.0 16330 1.6875  0,1278 02300  0.5556
22 17179 20050 00935 01841 05081
24 17922 24031 00884 01472 0.4647
26 18571 28960 00501 01179 04252
2.8 19140 35001 00368 00946 03894
30 1.9640 42346 00272 007680 03571
50 22381 25.000 0.001% 00113 01667
= 2.2495 = 0 0 0
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Example: Effect of Back Pressure on Mass Flow
Rate

The critical-pressure ratio is determined from Table 12-2 (or Eq. 12-22) 10
be F*F, = 0.5283,

(a) The back pressure ratio for this case is

P, 0.7 MPa
P, L045MPa

= 0.670

which is greater than the critical-pressure ratio, 05283, Thus the exit plane
pressure (or throat pressure FJ is equal to the back pressure in this case.
That is, P, = F, = 0.7 MPa, and F;/F, = 0.670. Therefore, the flow is not
choked. From Table A-13 at F/F, = 0.670, we read Ma, = 0.778 and T,/7, =
0,892,



Example: Effect of Back Pressure on Mass Flow
Rate

The mass flow rate through the nozzle can be calculated from Eg. 12-24,
But it can also be determined in a step-by-step manner as follows:

T, = 08927, = 0.802(8334 K) = 788.5K

P, 700 kPa
Pt RT, ” (0.287 KPa-m?/kg-K)(788.5 K)

— 3.093 ke/m’

V, = Ma,c, = Ma, VvV iART]

1000 mzfsz)

_ (0.??8)\/ (14)(0.287 kl/kg K)(788.5 K) ( 1 kl/kg

= 437.0 m/s
Thus,
m = p,AV, = (3.003 kg/m*)(50 X 10+ m)(437.9 m/s) = 6.77 kg/s



Example: Effect of Back Pressure on Mass Flow
Rate

(b) The back pressure ratio for this case is

P, 04MPa

= = 0.333
£, 1.045MPa

which is less than the critical-pressure ratio, O.5283 . Therefore, sonic condi-
tions exist at the exit plane (throat) of the nozzle, and Ma = 1. The flow is

choked in this case, and the mass flow rate through the nozzle is calculated
from Eq. 12-25:

k { 2 (1020 —10]
7 = AXP
" ™ RT,\k + 1)
1.4 9 24/0.8
— (50 X 104 m?)(1045 kP \/ ( )
( e N 0287 Kikg K884 K) \ 14 + 1

= 7.10 kg/s



ISENTROPIC FLOW THROUGH NOZZLES

The effect of back pressure on the pressure distribution along a
converging divergent nozzle:

Oxidizer + Fuel

FIGURE 12-20
Converging—diverging nozzles are commonly used in rocket engines to provide high thrust.
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ISENTROPIC FLOW THROUGH NOZZLES

The effect of back pressure on the pressure distribution along a
converging divergent nozzle:
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Example 12-6 : Airflow through a Converging—
Diverging Nozzle

Alr enters a converging—diverging nozzle, shown in Fig, 12-22, at 1.0 MF3
and 800 K with negligible velocity, The flow is steady, one-dimensional,
and isentropic with & = 1.4 For an exit Mach number of Ma = 2 and a
throat area of 20 cm?, determine (a) the throat conditions, (b) the exit plane

conditions, including the exit area, and (¢) the mass flow rate through the
nozzle,
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Example 12-6 : Airflow through a Converging—
Diverging Nozzle

SOLUTION Air flows through a converging—diverging nozzle. The throat and
the exit conditions and the mass flow rate are to be determined.
Assumptions 1 Air is an ideal gas with constant specific heats at room tem-
perature. 2 Flow through the nozzle is steady, one-dimensional, and isentropic.
Properties The specific heat ratio of air is given to be ¥ = 1.4. The gas con-
stant of air is 0.287 kl/kg-K.

Analysis The exit Mach number is given to be 2. Therefore, the flow must be
sonic at the throat and supersonic in the diverging section of the nozzle. Since
the inlet velocity i1s negligible, the stagnation pressure and stagnation tem-
perature are the same as the inlet temperature and pressure, £, = 1.0 MPa
and 1, = 800 K. Assuming Ideal-gas behavior, the stagnation density Is

37



o]

k

+1

S~ Do v R

1
Ma

(

+

k—1
2

2+ (k — 1)Ma?

2 k _ 1 ) 05k+1)WE—1)
1+ "M
k+ 1)( 7 a)]

kK —1)
Maz)

—Uk—1)
7Ma2)

TABLE A-13

One-dimensional isentropic compressible flow functions for an ideal

oas with k = 1.4

Ia Ma* A4 FiFy alag TiT,

0 0 % 1.0000  1.0000 10000
0.1 01094 58218 09930 09950 09980
02 02182 29635 09725 09803 09921
03 03257 20351 09395 09564 09823
0.4 04313 1.5901  0.8956 09243  0.9690
0.5  0.5345 13398 0.8430 08852 09524
0.6 06348 1.1882  0.7840  0.8405 09328
07 07318 1.0944 07209 07916 09107
0.8 08251 1.0382 06560 07400  0.B865
0.9 09146 1.0089  0.5913 06870 08606
1.0 1.0000 1.0000 05283 06339 (08333
1.2 1.1583 1.0304  0.4124 05311 07764
14  1.2999 1.1149  0.2142 04374 07184
16  1.4254 1.2502  0.2353 03557  0.66l4
1.8  1.5380 1.4390  0.1740 02868  0.6068
2.0 16330 1.6875  0,1278 02300  0.5556
22 17179 20050 00935 01841 05081
24 17922 24031 00884 01472 0.4647
26 18571 28960 00501 01179 04252
2.8 19140 35001 00368 00946 03894
30 1.9640 42346 00272 007680 03571
50 22381 25.000 0.001% 00113 01667
= 2.2495 = 0 0 0
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Example 12-6 : Airflow through a Converging—
Diverging Nozzle

(a) At the throat of the nozzle Ma = 1, and from Table A—13 we read

%: = 0.5283 % = (.8333 % = 0.6339
Thus,
P* = 0.5283P, = (0.5283)(1.0 MPa) = 0.5283 MPa
T* = 0.83337, = (0.8333)(800 K) = 666.6 K
p* = 0.6339p, = (0.6339)(4.355 kg/m’) = 2.761 kg/m°
Also,

1000 m?/s?

VE = o = VIRT* = \/ (1.4)(0.287 kJ/kg K)(666.6 K)( =
g

= 517.5m/s

)



Example 12-6 : Airflow through a Converging—
Diverging Nozzle

(D) Since the flow iIs Isentropic, the properties at the exit plane can also be
calculated by using data from Table A-13. For Ma = 2 we read

P, T, P, A,
— = 0.1278 — = 0.5556 — = 0.2300 Ma;" = 1.6330 = 1.6875
P'D T[} pﬂ ¥

Thus,

P, = 0.1278P, = (0.1278)(1.0 MPa) = 0.1278 MPa
T. = 0.5556T, = (0.5556)(300 K) = 444.5 K

p. = 0.2300p, = (0.2300)(4.355 kg/m’®) = 1.002 kg/m>
A, = 1.68754% = (1.6875)(20 cr?) = 33.75 cm?



Example 12-6 : Airflow through a Converging—
Diverging Nozzle

and
V, = Ma#c* = (1.6330)(517.5 m/s) = 845.1 m/s

The nozzle exit velocity could also be determined from V, = Ma.,, where c,
Is the speed of sound at the exit conditions:

1000 m?/s?
V. = Mac, = Ma VART, = 2\/ (1.4)(0.287 kI/kg K)(444.5 K)( 11{& - )
2
— 845.2 ms

(c) Since the flow is steady, the mass flow rate of the fluid is the same at all
sections of the nozzle. Thus it may be calculated by using properties at any
cross section of the nozzle. Using the properties at the throat, we find that
the mass flow rate is

W o= p*ARVE = (2761 ke/m®)(20 X 104 m?)(517.5 m/s) = 2.86 kg/s



SHOCK WAVES AND EXPANSION WAVES

Control

Shoc;,k wave

FIGURE 12-23

Control volume for flow across a
normal shock wave.
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FIGURE 12-24

Schlieren image of a normal shock in

a Laval nozzle. The Mach number in
the nozzle just upstream (to the left) of
the shock wave 1s about 1.3. Boundary
layers distort the shape of the normal
shock near the walls and lead to flow
separation beneath the shock.



