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DUCT FLOW WITH HEAT TRANSFER AND
NEGLIGIBLE FRICTION (RAYLEIGH FLOW)

The essential features of such complex flows can still be captured by a simple analysis by
modeling the generation or absorption of thermal energy as heat transfer through the
duct wall at the same rate and disregarding any changes in chemical composition. This
simplified problem is still too complicated for an elementary treatment of the topic since
the flow may involve friction, variations in duct area, and multidimensional effects. In this
section, we limit our consideration to one-dimensional flow in a duct of constant cross-
sectional area with negligible frictional effects.
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Many practical compressible flow
problems involve combustion, which
may be modeled as heat gain through
the duct wall.




DUCT FLOW WITH HEAT TRANSFER AND
NEGLIGIBLE FRICTION (RAYLEIGH FLOW)

Consider steady one-dimensional flow of an ideal gas with constant specific heats through
a constant-area duct with heat transfer, but with negligible friction. Such flows are
referred to as Rayleigh flows
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Control volume for flow in a
constant-area duct with heat
transfer and negligible friction,
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Governing Equations
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Conservation of mass: I -

Control
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my = np or p AV, = py AV,
Since we have a constant Cross Sectional Area, A

PV = p.Vs

-

Linear momentum equation:
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Governing Equations

Second Law of Thermodynamic:

Equation of State
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Governing Equations Summary
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FIGURE 12-48

T-s diagram for flow in a constant-area
duct with heat transfer and negligible
friction (Rayleigh flow).



Governing Equations Summary

May, = 1/ vk

Tll

Ihy=T+ VEJ"EL’.‘;} Cooling Ma < agMa, = 1
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From the Continuity Equation

pV = constant = K

P + KV = constant
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FIGURE 12-48

T-s diagram for flow in a constant-area
duct with heat transfer and negligible
friction (Rayleigh flow).



Governing Equations Summary

TABLE 12-3

The effects of heating and cocling on the properties of Rayleigh flow

Heating Cooling
Property Subsonic Supersonic Subsonic Supersonic
Velocity, V Increase Decrease Decrease Increase
Mach number, Ma Increase Decrease Decrease Increase
Stagnation temperature, T, Increase Increase Decrease Decrease
Temperature, T Increase for Ma < 1/k'7 Increase Decrease for Ma < 1/kM Decrease
Decrease for Ma > 1/k\% Increase for Ma > 1/kM?
Density, p Decrease Increase Increase Decrease
Stagnation pressure, P, Decrease Decrease Increase Increase
Pressure, P Decrease Increase Increase Decrease
Entropy, s Increase Increase Decrease Decrease
May, = 1/ vk
- Tax == mmmmm=m
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Extremes of Rayleigh Line

Consider the T-s diagram of Rayleigh flow, as shown in Fig. 12-50. Using
the differential forms of the conservation equations and property relations,
show that the Mach number is Ma, = 1 at the point of maximum entropy
(point &), and Ma, = 1Vk at the point of maximum temperature (point b).

FIGURE 12-350
The 7-s diagram of Rayleigh flow
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Extremes of Rayleigh Line

SOLUTION 1t is to be shown that Ma, = 1 at the point of maximum entropy
and Ma, = 1V% at the point of maximum temperature on the Rayleigh line.
Assumptions The assumptions associated with Rayleigh flow (i.e., steady
one-dimensional flow of an ideal gas with constant properties through a con-
stant cross-sectional area duct with negligible frictional effects) are valid.
Analysis The differential forms of the continuity (pV = constant), momentum
[rearranged as P + (pV)V = constant], ideal gas (P = pRT), and enthalpy
change (Ah = ¢, AT) equations are expressed as

dp  dV

pV = constant — pdV +Vdp=0 — F v (M
dP
P + (pV)V = constant — dP + (pV)dV =0 — E = —pV (2)
dP dT" dp
P=pRT — dP =pRdT + RTdp — P=T+p (3)

The differential form of the entropy change relation (Eq. 12-40) of an ideal

gas with constant specific heats is
dT dP

ds =c,— — R— 4
s CPT P 4)
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Extremes of Rayleigh Line
Substituting Eq. 3 into Eq. 4 gives

d, d d
a’szcﬂ—R(ﬁ—k—p) = (c —R)E—R—pzig—ﬁ?—ﬂ (5)
rr T p P T p k—1T p

since
¢, R=¢, - key,—R=¢, —> c,=RIk—1)
Dividing both sides of Eq. 5 by dT and combining with Eqg. 1,

ds R N R dV
dir Ttk — 1) vV dT
Dividing Eq. 3 by dV and combining it with Egs. 1 and 2 give, after rear-

(6)

ranging,
ar_1_ v
dv. 'V R
Substituting Eq. 7 into Eq. 6 and rearranging,
ds R R R(kRT — V?)

= + — = ,J ®
dT  Ttk—1) T— VYR Tk — 1)RT — V?)

Setting ds/dT = 0 and solving the resulting equation R(kRT — V2) = O for V
give the velocity at point a to be

— V. \/RT,
V.= VKRT, and Ma,=—=—7To=1 (9)

Ca VERT,
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Extremes of Rayleigh Line

Therefore, sonic conditions exist at point a, and thus the Mach number is 1.
Setting dT/ds = (ds/dT)! = 0 and solving the resulting equation
T(k — 1) X (RT — v2) = 0 for velocity at point b give

V,= VRT, and Ma, = % _ ﬂ - 1_,_ (10)
Co VERT, Vk
Therefore, the Mach number at point b is Ma, = 1Vk. For air, k = 1.4 and
thus Ma, = 0.845.
Discussion Note that in Rayleigh flow, sonic conditions are reached as the
entropy reaches its maximum value, and maximum temperature occurs during
subsonic flow.
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Effect of Heat Transfer on Flow Velocity

Starting with the differential form of the energy equation, show that the flow
velocity increases with heat addition in subsonic Rayleigh flow, but decreases

in supersonic Rayleigh flow.

SOLUTION It is to be shown that flow velocity increases with heat addition
in subsonic Rayleigh flow and that the opposite occurs in supersonic flow.
Assumptions 1 The assumptions associated with Rayleigh flow are valid.
2 There are no work interactions and potential energy changes are negligible.
Analysis Consider heat transfer to the fluid in the differential amount of 4.
The differential forms of the energy equations are expressed as

)

T) = c,dT + VdV (M

Fe

5q=dhﬂ=d(h+

Dividing by ¢, T and factoring out dV/V give

8q dT VdV dV(Ud‘T (k—nVﬂ)
= — + = +

¢,T T ¢T V\av T kRT

(2)
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Effect of Heat Transfer on Flow Velocity

where we also used ¢, = kR/(k — 1). Noting that Ma? = V2/c* = V4/kRT and
using Eq. 7 for d7/dV from Example 12-12 give

o dV(V(T v) +(k— 1M ) av (1 i +kMa>— M ) (3)
= —\— — = — a )= —\1——= a- — Ma“
¢,T  VAT\V R v TR

Canceling the two middle terms in Eq. 3 since V¥ TR = k Ma? and rearranging
give the desired relation,

v dq
V. T - Ma?)

(4)

In subsonic flow, 1 — Ma? > 0 and thus heat transfer and velocity change
have the same sign. As a result, heating the fluid (6g > 0) increases the
flow velocity while cooling decreases it. In supersonic flow, however,
1 — Ma? < 0 and heat transfer and velocity change have opposite signs. As
a result, heating the fluid (6g > 0) decreases the flow velocity while cooling
increases it (Fig. 12-51).

Discussion Note that heating the fluid has the opposite effect on flow velocity
in subsonic and supersonic Rayleigh flows.
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Property Relations for Rayleigh Flow

Since Ma = V/c = V/VkRT

Thus V = MaVKRT

Since P = pRT

Substitute in the momentum equation P, + p,Vi=P, + p,V3
We get P, + kP Ma} = P, + kP,Ma3

Which can be rearranged as P, [ 1+ !{Malf

P, 1+ kMa2
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Property Relations for Rayleigh Flow

Again utilizing

The continuity equation

is expressed as

Then the ideal-gas relation

Becomes

V.= MaVKRT

PV = p,V,
V,  Ma, VERT, Ma:\/i

Vi Ma,VKRT, Ma, VT,

P, P,

pily paTs
T, Pyp, (1 + kMal )( Maz'\f’i)
T, P, p; 1 + kMa3 Mz]l\fﬁ

Solving Eq. for the temperature ratio T,/T, gives

T, (/M;llfl + ﬁ:f\-']alf;')z

T, \Mayl + kMa})
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Property Relations for Rayleigh Flow

o o p, Vo Ma,VERT, Ma,VT,
Substituting this relation into Eq. 12-59 = —=——" —
P2 Vi Ma,VEKRT, Ma, VT,

gives the density or velocity ratio as

p, V, MaXl + kMad
p, V, Ma¥l + kMad)

Flow properties at sonic conditions are usually easy to determine, and thus the critical
state corresponding to Ma = 1 serves as a convenient reference point in compressible flow.
Taking state 2 to be the sonic state (Ma, = 1, and superscript * is used) and state 1 to be

any state (no subscript)

T, (”Mulfl + ;::x-m{;')f P, 1+ kMaj

I,  \May(l + kMa)) P, 1+ kMaj
P 1+k T ([‘v‘[u{l + ;:_.)-‘- | Vo p* (1 +k)Ma?
PY 1+ kM2 TF  \1+ikMa2) ° p 1+ kM
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Property Relations for Rayleigh Flow

Similar relations can be obtained for dimensionless stagnation temperature
and stagnation pressure as follows:

T, T, T T* k— 1 Ma(l + k)? k—1\"1
-i:i_f7=0+ _ Mﬂ(” 3(&%——)
T, T T*T, 2 1 + kMa? 2

which simplifies to

T, (k+ DMa[2 + (k — 1)Ma’]
T (1 + kMa?)?

Py Py, p pP* | k— 1 M ,,)”{k_“ 1+ k | k — 1)‘““‘7—1-‘
g =— — =1+ e — = M1+
Py P P* P 2 ] 1 + kMa- 2

R k+ 1 (2 + (k — 1;?»-1a13)*f'*—'3
B' 1+ kMa? k+ 1

Also,
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Rayleigh Flow Equation Summary and tables

T, (k+ DMa?[2 + (k — 1)Ma?]

Ty (1 + kMa*)?

P, k+1 [2+4 (k— 1)Ma?
P T+ kMa:( k+1

T Ma(l + k)2

T* ( 1 + kMu:)

P 14k

P¥ 1 4 kMa?

Vv  p* (I + kMa’

Vi p T 1+ kMa?

)H(k— 1)
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Rayleigh Flow Equation Summary and tables

Rayleigh flow functions for an ideal gas with k= 1.4

i _ (k + 1)Ma?[2 + (k — 1)Ma?] Ma TQ-"(TG* PIDJ{PD* TT* pIp* VIV*
Ty (1 + kMa?)?
Py k+1 [2+ (k— DMa?\FE=D 0.0 0.0000 1.2679 0.0000 2.4000 0.0000
Py 1+ kMa3( k+1 ) 0.1 0.0468 1.2591 0.0560 2.3669 0.0237
T Ma(l + ©)\2 0.2 0.1736 1.2346 0.2066 2.2727 0.0909
T (Hm) 0.3 0.3469 1.1985 0.4089 2.1314 0.1918
P L4k 0.4 0.5290 1.1566 0.6151 1.9608 0.3137
T o 05 06914  1.1141 0.7901 1.7778  0.4444
Voot (4 M 0.6 0.8189 1.0753 0.9167 1.5957 0.5745
o T T M 0.7 0.9085 1.0431 0.9929 1.4235 0.6975
0.8 0.9639 1.0193 1.0255 1.2658 0.8101
0.9 0.9921 1.0049 1.0245 1.1246 0.9110
1.0 1.0000 1.0000 1.0000 1.0000 1.0000
1.2 0.9787 1.0194 0.9118 0.7958 1.1459
1.4 0.9343 1.0777 0.8054 0.6410 1.2564
1.6 0.8842 1.1756 0.7017 0.5236 1.3403
1.8 0.8363 1.3159 0.6089 0.4335 1.4046
2.0 0.7934 1.5031 0.5289 0.3636 1.4545
2.2 0.7561 1.7434 0.4611 0.3086 1.4938
2.4 0.7242 2.0451 0.4038 0.2648 1.5252
2.6 0.6970 24177 0.3556 0.2294 1.55056
2.8 0.6738 2.8731 0.3149 0.2004 1.5711

3.0 0.6540 3.4245 0.2803 0.1765 1.5882
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Rayleigh Flow Equation Summary and tables
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Example: Rayleigh Flow in a Tubular Combustor

A combustion chamber consists of tubular combustors of 15-cm diameter.
Compressed air enters the tubes at 550 K, 480 kPa, and 80 m/s (Fig. 12-54).
Fuel with a heating value of 42,000 kJ/kg is injected into the air and is
burned with an air—fuel mass ratio of 40. Approximating combustion as a
heat transfer process to air, determine the temperature, pressure, velocity,
and Mach number at the exit of the combustion chamber.

= Py T,V
I » Combustor 2 2. 2
| tube |
1"’] = 80 m/s | :
A o
FIGURE 12-54

Schematic of the combustor tube
analyzed in Example 12-14.
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Example: Rayleigh Flow in a Tubular Combustor

SOLUTION Fuel is burned in a tubular combustion chamber with com-
pressed air. The exit temperature, pressure, velocity, and Mach number are
to be determined.

Assumptions 1 The assumptions associated with Rayleigh flow (i.e., steady
one-dimensional flow of an ideal gas with constant properties through a
constant cross-sectional area duct with negligible frictional effects) are valid.
2 Combustion is complete, and it is treated as a heat addition process, with
no change in the chemical composition of the flow. 3 The increase in mass
flow rate due to fuel injection is disregarded.

Properties We take the properties of air to be kK = 1.4, c, = 1.005 kl/kgK,
and R = 0.287 kJ/kg-K.

Analysis The inlet density and mass flow rate of air are

B 480 kPa
PL™ RT, (0287 Kl/kg-K)(550 K)

= 3.041 kg/m’

m,. = p AV, = (3.041 ke/m?) [7(0.15 m)*/4](80 m/s) = 4.299 kg/s
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Example: Rayleigh Flow in a Tubular Combustor

The mass flow rate of fuel and the rate of heat transfer are

My, 4.299 kgfs

air

11
fuel AR 40

= 0.1075 kg/s

0= nige HY = (0.1075 kg/s)(42,000 klJ/kg) = 4514 kW

' 4514 K/
g- 2 > — 1050 kl/kg
1, 4.299 kg/s

air

The stagnation temperature and Mach number at the inlet are

%6 (80 m/s) 1 kl/kg i
2, 2(1.005 kJ/kg-K) \ 1000 m?/s?
1000 m2/s2
¢, = VART, = + [ (1.4)0. - K)(550 M/STN 4701 mis
1 kRT, 1.4)(0.287 K/ke-K)(550 K) — =
1% 80 m/
Ma, = — = — = (.1702

¢, 470.1 m/s



Example: Rayleigh Flow in a Tubular Combustor

The exit stagnation temperature is, from the energy equation g = c,(7p, — 7o),

o= 1, + 4 5530k + —0Kke ek
2 T T 1.005 kJ/kg K

The maximum value of stagnation temperature 77 occurs at Ma = 1, and
its value can be determined from Table A-15 or from Eq. 12-65. At Ma; =
0.1702 we read T,/T§5 = 0.1291. Therefore,

o T,y  5532K
O 0.1291  0.1291

= 4284 K

The stagnation temperature ratio at the exit state and the Mach number
corresponding to it are, from Table A-15,

Ty, 1598K

2 — 0.3730 — Ma, = 03142 = 0.314
T ~ 4284K B
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Example: Rayleigh Flow in a Tubular Combustor
The Rayleigh flow functions corresponding to the inlet and exit Mach numbers

are (Table A-15):

TI P] . Vl
Ma; = 0.1702:  —-=01541 —-=23065 . = 00668

=5 V:k: o
T, P, V,
Ma, = 0.3142: — =04389 — = 2.1086 — = 0.2082

Then the exit temperature, pressure, and velocity are determined to be

T, TJ/T*  0.4389
L, L = 2.848 — T, = 2.848T, = 2.848(550 K) = 1570 K

T, TJ/T*  0.1541

P, P/P* 21086
— = = = 09142 - P, = 0.9142P, = 0.9142(480 kPa) = 439 kPa

P, PJ/P¥ 23065

V, Vi/VE 02082
S A = 3.117 > V, = 3.117V, = 3.117(80 m/s) = 249 m/s

V, V/VE  0.0668

Discussion Note that the temperature and velocity increase and pressure
decreases during this subsonic Rayleigh flow with heating, as expected. This
problem can also be solved using appropriate relations instead of tabulated
values, which can likewise be coded for convenient computer solutions.
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ADIABATIC DUCT FLOW WITH FRICTION (FANNO FLOW)
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volume B

FIGURE 12-55

Control volume for adiabatic flow in a
constant-area duct with friction.
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DUCT FLOW WITH HEAT TRANSFER AND
NEGLIGIBLE FRICTION (RAYLEIGH FLOW)

So far we have limited our consideration mostly to isentropic flow, also

called reversible adiabatic flow since it involves no heat transfer and no
irreversibilities such as friction. Many compressible flow problems encountered
in practice involve chemical reactions such as combustion, nuclear

reactions, evaporation, and condensation as well as heat gain or heat loss
through the duct wall. Such problems are difficult to analyze exactly since

they may involve significant changes in chemical composition during flow,

and the conversion of latent, chemical, and nuclear energies to thermal

energy

Fuel nozzles or spray bars

L

Air inlet

F]ame holders

FIGURE 12-46

Many practical compressible flow
problems involve combustion, which
may be modeled as heat gain through
the duct wall.



