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DUCT FLOW WITH HEAT TRANSFER AND NEGLIGIBLE FRICTION 
(RAYLEIGH FLOW)

Consider steady one-dimensional flow of an ideal gas with constant specific heats through
a constant-area duct with heat transfer, but with negligible friction. Such flows are
referred to as Rayleigh flows
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Governing Equations Summary
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Governing Equations Summary
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Chocked Rayleigh Flow
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It is clear from the earlier discussions that subsonic Rayleigh flow in a duct may accelerate 
to sonic velocity (Ma = 1) with heating. 
What happens if we continue to heat the fluid? Does the fluid continue to accelerate to 
supersonic velocities? An examination of the Rayleigh line indicates that the fluid at the 
critical state of Ma = 1 cannot be accelerated to supersonic velocities by heating. 
Therefore, the flow is choked. 
This is analogous to not being able to accelerate a fluid to supersonic velocities in a 
converging nozzle by simply extending the converging flow section. 
If we keep heating the fluid, we will simply move the critical state further downstream and 
reduce the flow rate since fluid density at the critical state will now be lower.
Therefore, for a given inlet state, the corresponding critical state fixes the maximum 
possible heat transfer for steady flow.



Chocked Rayleigh Flow
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Further heat transfer causes choking and thus the inlet state to change (e.g., inlet
velocity will decrease), and the flow no longer follows the same Rayleigh line.
Cooling the subsonic Rayleigh flow reduces the velocity, and the Mach number
approaches zero as the temperature approaches absolute zero. Note that the
stagnation temperature T0 is maximum at the critical state of Ma = 1.
In supersonic Rayleigh flow, heating decreases the flow velocity. Further heating
simply increases the temperature and moves the critical state farther
downstream, resulting in a reduction in the mass flow rate of the fluid.



ADIABATIC DUCT FLOW WITH FRICTION (FANNO FLOW)

Consider steady, one-dimensional, adiabatic flow of an ideal gas with constant
specific heats through a constant-area duct with significant frictional
effects. Such flows are referred to as Fanno flows.
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Governing Equations
Conservation of mass:

Since we have a constant Cross Sectional Area, A

Linear momentum equation:
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Governing Equations
Conservation of Energy:

Since , this equation reduces to

Therefore, the stagnation enthalpy h0 and stagnation temperature T0

remain constant during Fanno flow.
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Governing Equations
Second Law of Thermodynamic:

Equation of State
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Governing Equations Summary
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Property Relations for Fanno Flow
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Continuity Equation
The differential form of the continuity equation is obtained by differentiating the 
continuity relation

Thus

Momentum Equation
The differential form of the Momentum equation is given by

which yields



Property Relations for Fanno Flow

15

The friction force is related to the wall shear stress and the local friction factor f by

where dx is the length of the flow section, p is the perimeter, and Dh = 4A/p is the 
hydraulic diameter of the duct

Substituting,

Since

Thus

Since 



Property Relations for Fanno Flow
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We have

Substituting,

Energy Equation

Differentiating and arranging



Property Relations for Fanno Flow
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Mach Number

Differentiating and rearranging give

Dividing each term by 2V2 and rearranging,

Substituting by dT/T



Property Relations for Fanno Flow
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Ideal Gas

Differentiating

differential equation for the variation of the Mach number with x as



Property Relations for Fanno Flow
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Considering that all Fanno flows tend to Ma = 1, it is again convenient
to use the critical point (i.e., the sonic state) as the reference point and to
express flow properties relative to the critical point properties, even if the
actual flow never reaches the critical point. Integrating Eq. from any
state (Ma = Ma and x = x) to the critical state (Ma=1 and x = xcr) gives

where f is the average friction factor between x and xcr,
which is assumed to be constant, and L* = xcr - x is the

channel length required for the Mach number to reach unity
under the influence of wall friction. Therefore, L* represents
the distance between a given section where the Mach
number is Ma and a section (an imaginary section if the
duct is not long enough to reach Ma = 1) where sonic 

conditions occur.



Property Relations for Fanno Flow
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The actual duct length L between two sections where the Mach numbers
are Ma1 and Ma2 can be determined from

If f is approximated as constant for the entire duct (including the hypothetical extension 
part to the sonic state), then Eq. simplifies to

The friction factor depends on the Reynolds number

any change in Re is due to the variation of viscosity with temperature.
f can be calculated from the Moody chart or Haaland equation



Property Relations for Rayleigh Flow
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Relations for other flow properties can be determined similarly by integrating
the dP/P, dT/T, and dV/V relations
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Fanno Flow Equation Summary and tables
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Fanno Flow Equation Summary and tables
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Fanno Flow Equation Summary and tables



25

Moody Chart



Chocked Fanno Flow
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It is clear from the previous discussions that friction causes subsonic Fanno flow in a 
constant-area duct to accelerate toward sonic velocity, and the Mach number becomes 
exactly unity at the exit for a certain duct length. This duct length is referred to as the 
maximum length, the sonic length, or the critical length, and is denoted by L*. You may 
be curious to know what happens if we extend the duct length beyond L*. In particular, 
does the flow accelerate to supersonic velocities? The answer to this question is a definite 
no since at Ma = 1 the flow is at the point of maximum entropy, and proceeding along the 
Fanno line to the supersonic region would require the entropy of the fluid to decrease—a 
violation of the second law of thermodynamics. (Note that the exit state must remain on 
the Fanno line to satisfy all conservation requirements.) Therefore, the flow is choked. 
This again is analogous to not being able to accelerate a gas to supersonic velocities in a 
converging nozzle by simply extending the converging flow section. If we extend the duct 
length beyond L* anyway, we simply move the critical state further downstream and 
reduce the flow rate. This causes the inlet state to change (e.g., inlet velocity decreases), 
and the flow shifts to a different Fanno line. Further increase in duct length further 
decreases the inlet velocity and thus the mass flow rate.



Chocked Fanno Flow
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Friction causes supersonic Fanno flow in a constant-
area duct to decelerate and the Mach number to 
decrease toward unity. Therefore, the exit Mach 
number again becomes Ma = 1 if the duct length is L*, 
as in subsonic flow. But unlike subsonic flow, increasing 
the duct length beyond L* cannot
choke the flow since it is already choked. Instead, it 
causes a normal shock to occur at such a location that 
the continuing subsonic flow becomes sonic again 
exactly at the duct exit (Fig.). As the duct length 
increases, the
location of the normal shock moves further upstream. 
Eventually, the shock occurs at the duct inlet. Further 
increase in duct length moves the shock to the 
diverging section of the converging–diverging nozzle 
that originally generates the supersonic flow, but the 
mass flow rate still remains unaffected since the mass 
flow rate is fixed by the sonic conditions at the throat of 
the
nozzle, and it does not change unless the conditions at 
the throat change.



Example: Chocked Fanno Flow
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Example: Chocked Fanno Flow
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Example: Chocked Fanno Flow
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Example: Chocked Fanno Flow
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Example: Exit Conditions of Fanno Flow in a Duct
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Example: Exit Conditions of Fanno Flow in a Duct
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Example: Exit Conditions of Fanno Flow in a Duct
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