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DUCT FLOW WITH HEAT TRANSFER AND NEGLIGIBLE FRICTION
(RAYLEIGH FLOW)

Consider steady one-dimensional flow of an ideal gas with constant specific heats through
a constant-area duct with heat transfer, but with negligible friction. Such flows are
referred to as Rayleigh flows
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Control volume for flow in a
constant-area duct with heat
transfer and negligible friction,



Governing Equations Summary
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FIGURE 12-48

T-s diagram for flow in a constant-area
duct with heat transfer and negligible
friction (Rayleigh flow).



Governing Equations Summary

TABLE 12-3

The effects of heating and cocling on the properties of Rayleigh flow

Heating Cooling
Property Subsonic Supersonic Subsonic Supersonic
Velocity, V Increase Dacrease Decrease Increase
Mach number, Ma Increase Dacrease Decrease Increase
Stagnation temperature, T, Increase Increase Decrease Decrease
Temperature, T Increase for Ma < 1/k'7 Increase Decrease for Ma < 1/k'* Decrease
Decrease for Ma = 1/kM? Increase for Ma = 1/k7
Density, p Decrease Increase Increase Decrease
Stagnation pressure, P, Decrease Decrease Increase Increase
Pressure, P Decrease Increase Increase Decrease
Entropy, s Increase Increase Decrease Decrease
May, = 1/ vk
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Governing Equations Summary
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Chocked Rayleigh Flow

It is clear from the earlier discussions that subsonic Rayleigh flow in a duct may accelerate
to sonic velocity (Ma = 1) with heating.

What happens if we continue to heat the fluid? Does the fluid continue to accelerate to
supersonic velocities? An examination of the Rayleigh line indicates that the fluid at the
critical state of Ma = 1 cannot be accelerated to supersonic velocities by heating.
Therefore, the flow is choked.

This is analogous to not being able to accelerate a fluid to supersonic velocities in a
converging nozzle by simply extending the converging flow section.

If we keep heating the fluid, we will simply move the critical state further downstream and
reduce the flow rate since fluid density at the critical state will now be lower.

Therefore, for a given inlet state, the corresponding critical state fixes the maximum
possible heat transfer for steady flow.
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Chocked Rayleigh Flow

Further heat transfer causes choking and thus the inlet state to change (e.g., inlet
velocity will decrease), and the flow no longer follows the same Rayleigh line.
Cooling the subsonic Rayleigh flow reduces the velocity, and the Mach number
approaches zero as the temperature approaches absolute zero. Note that the
stagnation temperature T, is maximum at the critical state of Ma = 1.

In supersonic Rayleigh flow, heating decreases the flow velocity. Further heating
simply increases the temperature and moves the critical state farther
downstream, resulting in a reduction in the mass flow rate of the fluid.



ADIABATIC DUCT FLOW WITH FRICTION (FANNO FLOW)

Consider steady, one-dimensional, adiabatic flow of an ideal gas with constant
specific heats through a constant-area duct with significant frictional
effects. Such flows are referred to as Fanno flows.
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FIGURE 12-55
Control volume for adiabatic flow in a
constant-area duct with friction.
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Governing Equations

Conservation of mass:

my = np or p AV, = py AV,

Since we have a constant Cross Sectional Area, A —X Fiiction
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Linear momentum equation: |
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Governing Equations

: Fiiction
—
Conservation of Energy: | |
Py, T, py| | Py, Ty, py
. ﬁ-: -
E. =F Vi | V
11 out [ I
L__W___I
B B
Vi 3 V2
hy +—=h+— — hy=hy — hy=h+ —- = constant
Since Ah = ¢, AThis equation reduces to
Vi V3 V3
T, + ? =T, + ? — Ty, =T, — T,=T+ ? = constant
“*p =*p “*p

Therefore, the stagnation enthalpy h, and stagnation temperature T,
remain constant during Fanno flow.
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Governing Equations

Second Law of Thermodynamic:
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Equation of State
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Governing Equations Summary
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FIGURE 12-56

T-s diagram for adiabatic frictional
flow 1n a constant-area duct (Fanno
flow). Numerical values are for air
with £k = 1.4 and inlet conditions
of T, = 500 K, P, = 600 kPa,

V, = 80 m/s, and an assigned
value of s, = 0.




Governing Equations Summary

TABLE 12-4

The effects of friction on the properties of Fanno flow

Property Subsonic Supersonic
Velocity, V Increase Decrease
Mach number, Ma Increase Decrease
Stagnation temperature, T Constant Constant
Temperature, T Decrease Increase
Density, p Decrease Increase
Stagnation pressure, F, Decrease Decrease
Pressure, P Decrease Increase
Entropy, s Increase Increase
Ffﬁclinn
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Property Relations for Fanno Flow

Continuity Equation
The differential form of the continuity equation is obtained by differentiating the
continuity relation

pV = constant

" IV + Vdp = 0 dp_ _dV
G ap = —> T = ——
p p p v
Momentum Equation
The differential form of the Momentum equation is given by

. . Differential
PAE — [P + (’IP}A — SFfriCtion — H?(V + (ZV) — mV i.glnl::si
5Ff|'icti0n
2777720777777777:
P ! ! P+ dP
which yields T | T+ dT
B — —
Vv o L V4 dV
- - a‘rj'riulicm - - P :___ ____: p+dp
—dPA — 8F 4, = PAVAV o dP + —"" 4+ pVdV = 0 "
X = dx >

A]:AQZA
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Property Relations for Fanno Flow

The friction force is related to the wall shear stress and the local friction factor f by

! o) _I'A X A ] .
=7,dA, =7 pdx = (f— pV'>—d.r = Ji < pV -
8 D 2 D,

h -

oF

friction

where dx is the length of the flow section, p is the perimeter, and Dh = 4A/p is the
hydraulic diameter of the duct

Substituting, pvﬁj;_
dP + —dx + pVdV =0
“~~h
Since Ma = Vic = V/VEKRT
Thus V = MaVART

Since P = pR,,T



Property Relations for Fanno Flow

We have
pV? = pkRTMa? = kPMa* and pV = kPMa?/V

Substituting,
| dP fx dV
- - dx + — =10
kMa> P 2D, V

Energy Equation

T, = constant or T + V?*2c¢, = constant

TOZT(H .

Maj) = constant
Differentiating and arranging

dT 20k — DMa* dMa

T 2+ (k— 1)Ma? Ma



Property Relations for Fanno Flow

Mach Number

Ma = V/ic = VIVEKRT V2 = Ma2*kRT

Differentiating and rearranging give
2V dV = 2MakRT dMa + kRMa* dT

V? V?
dMa + —dT
T

2VdV =2
a

Dividing each term by 2V? and rearranging,

dV dMa | dT
+ -

1% Ma 2 T
Substituting by dT/T

dV  dMa (k — 1)Ma> dMa dav 2 dMa

= - . or — = —
Vv Ma 2 + (k— 1)Ma- Ma 1% 2 + (k — 1)Ma- Ma



Property Relations for Fanno Flow

Ideal Gas
P = pRT.

Differentiating

P dT d
dP = pRdT + RTdp — (P .

dP  dT  dV

P T V

dP _2 + 2(k — 1)Ma* dMa
P 2+ (k— 1)Ma> Ma

differential equation for the variation of the Mach number with x as

fx Iy = 4(1 o Md:) M
D, T kM2 + (k — DMa?]
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Property Relations for Fanno Flow

Considering that all Fanno flows tend to Ma = 1, it is again convenient

to use the critical point (i.e., the sonic state) as the reference point and to
express flow properties relative to the critical point properties, even if the
actual flow never reaches the critical point. Integrating Eq. from any

state (Ma = Ma and x = x) to the critical state (Ma=1 and x = x,,) gives

E | — Ma? k + 1 (k + 1)Ma*

= — + In .

D, kMa> 2%k 2+ (k — 1)Ma?
Sonic state
where fis the average friction factor between x and x_, | L | s relerence
which is assumed to be constant, and L* = x_, - x is the - ——

channel length required for the Mach number to reach unity ! — L

under the influence of wall friction. Therefore, L* represents | N
the distance between a given section where the Mach _, H‘_.théiimldm |

number is Ma and a section (an imaginary section if the
duct is not long enough to reach Ma = 1) where sonic
conditions occur.

extension to
sonic state



Property Relations for Fanno Flow

The actual duct length L between two sections where the Mach numbers
are Mal and Ma2 can be determined from

L (,f;ff? ) (”_H_ )
D, \D, D, /,

b & I

If fis approximated as constant for the entire duct (including the hypothetical extension
part to the sonic state), then Eq. simplifies to

L= L"!]: - L}; (f = constant)

The friction factor depends on the Reynolds number
Re = pVD,/u

any change in Re is due to the variation of viscosity with temperature.
f can be calculated from the Moody chart or Haaland equation

o [fa.g%g..-ﬂ)lﬂ
Vi FlRe T \37
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Property Relations for Rayleigh Flow

Relations for other flow properties can be determined similarly by integrating

the dP/P, dT/T, and dV/V relations

P 1 ( k+ 1 )”3

P¥  Ma\2 + (k — 1)Ma?

r k+ 1

™ 2+ (k — 1)Ma?

V 8 : kK + 1 12

- = Po_ Mu( : 3>

V* p 2 + (k — 1)Ma°
Po po 1 (24 (k- l}.\-']a:)‘*""”"““'
Py ps Ma\ Kk +1

21



Fanno Flow Equation Summary and tables

—= X ..
F friction
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Fanno Flow Equation Summary and tables

Fanno flow functions for an ideal gas with k = 1.4

T,=T;
P, p (2 k- ])Maz)(ﬁnfz(x\-—n Ma Pyl Py* T PIP* VIV* fL*ID
B pf  Ma k+1 0.0 = 1.2000 o 0.0000 e
T k+ 1 0.1 5.8218 1.1976 10.9435 0.1094 66.9216
T5 2+ (h— DM 0.2 2.9635 1.1905 5.4554 0.2182 14.5333
. e ” 0.3 2.0351 1.1788 3.6191 0.3257 5.2993
i E(z T ”Maz) 0.4 1.5901 1.1628 2.6958 0.4313 2.3085
0.5 1.3398 1.1429 2.1381 0.5345 1.0691
v _p*_ Ma( k+1 )“? 0.6 1.1882 1.1194 1.7634 0.6348 0.4908
Vi p 2 + (k — HMa? 0.7 1.0944 1.0929 1.4935 0.7318 0.2081
L5 1—Ma k+1  (k+ DHMa 0.8 1.0382 1.0638 1.2893 0.8251 0.0723
D e T M s v 0.9 1.0089 1.0327 1.1291 0.9146 0.0145
1.0 1.0000 1.0000 1.0000 1.0000 0.0000
1.2 1.0304 0.9317 0.8044 1.1583 0.0336
1.4 1.1149 0.8621 0.6632 1.2999 0.0997
1.6 1.2502 0.7937 0.5568 1.4254 0.1724
1.8 1.4390 0.7282 0.4741 1.5360 0.2419
2.0 1.6875 0.6667 0.4082 1.6330 0.3050
2.2 2.0050 0.6098 0.3549 1.7179 0.3609
2.4 2.4031 0.5576 0.3111 1.7922 0.4099
2.6 2.8960 0.5102 0.2747 1.8571 0.4526
2.8 3.5001 0.4673 0.2441 1.9140 0.4898

3.0 4.2346 0.4286 0.2182 1.9640 0.5222
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Fanno Flow Equation Summary and tables
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Moody Chart
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Chocked Fanno Flow

It is clear from the previous discussions that friction causes subsonic Fanno flow in a
constant-area duct to accelerate toward sonic velocity, and the Mach number becomes
exactly unity at the exit for a certain duct length. This duct length is referred to as the
maximum length, the sonic length, or the critical length, and is denoted by L*. You may
be curious to know what happens if we extend the duct length beyond L*. In particular,
does the flow accelerate to supersonic velocities? The answer to this question is a definite
no since at Ma = 1 the flow is at the point of maximum entropy, and proceeding along the
Fanno line to the supersonic region would require the entropy of the fluid to decrease—a
violation of the second law of thermodynamics. (Note that the exit state must remain on
the Fanno line to satisfy all conservation requirements.) Therefore, the flow is choked.
This again is analogous to not being able to accelerate a gas to supersonic velocities in a
converging nozzle by simply extending the converging flow section. If we extend the duct
length beyond L* anyway, we simply move the critical state further downstream and
reduce the flow rate. This causes the inlet state to change (e.g., inlet velocity decreases),
and the flow shifts to a different Fanno line. Further increase in duct length further
decreases the inlet velocity and thus the mass flow rate.




Chocked Fanno Flow

Friction causes supersonic Fanno flow in a constant-
area duct to decelerate and the Mach number to
decrease toward unity. Therefore, the exit Mach
number again becomes Ma = 1 if the duct length is L*,
as in subsonic flow. But unlike subsonic flow, increasing
the duct length beyond L* cannot

choke the flow since it is already choked. Instead, it
causes a normal shock to occur at such a location that
the continuing subsonic flow becomes sonic again
exactly at the duct exit (Fig.). As the duct length
increases, the

location of the normal shock moves further upstream.
Eventually, the shock occurs at the duct inlet. Further
increase in duct length moves the shock to the
diverging section of the converging—diverging nozzle
that originally generates the supersonic flow, but the
mass flow rate still remains unaffected since the mass
flow rate is fixed by the sonic conditions at the throat of
the

nozzle, and it does not change unless the conditions at
the throat change.

27
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If duct length L is greater than L*,
supersonic Fanno flow 1s always sonic
at the duct exit. Extending the duct
will only move the location of the
normal shock further upstream.




Example: Chocked Fanno Flow

Air enters a 3-cm-diameter smooth adiabatic duct at Ma, = 0.4, T, = 300 K,

and P, = 150 kPa (Fig. 12-62). If the Mach number at the duct exit is 1,
determine the duct length and temperature, pressure, and velocity at the duct
exit. Also determine the percentage of stagnation pressure lost in the duct.

Mag =1
P, = 150kPa x ;
T1=3UUK —- 1) = 3 cm V*
Ma, = 0.4 l

.
!*‘- L =!
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Example: Chocked Fanno Flow

Assumptions 1 The assumptions associated with Fanno flow (i.e., steady,
frictional flow of an ideal gas with constant properties through a constant
cross-sectional area adiabatic duct) are valid. 2 The friction factor is constant
along the duct.

Properties We take the properties of air to be k = 1.4, c, = 1.005 kl/kg-K,
R = 0.287 kJ/kg-K, and » = 1.58 X 107> m?/s.

Analysis We first determine the inlet velocity and the inlet Reynolds number,

1000 m?/s*

1 kl/kg
V, = Ma,c; = 0.4(347 m/s) = 139 m/s
~ViD (139 m/s)(0.03 m)

Re, = ———~ = 2637 X 10°
v 1.58 X 107° m-/s

c; = VLRT, = \/(1.4)(0.287 kJ/kg-K)(300 K)( ) = 347 m/s
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Example: Chocked Fanno Flow

The friction factor is determined from the Colebrook equation,

1 /D 251 1 0 251
= =-20 log(g + ) > —= = 20 log( + )

VFf 37 ReVF/ 37 2637 X 100V7
Its solution is
f=0.0148

The Fanno flow functions corresponding to the inlet Mach number of 0.4 are
(Table A-16):

Py, I, P, v, ﬂ'T

— = 1.53901 — = 1.1628 — = 2.6958 — = 04313 —— = 2.3085

P, T* p Vi D

0
Noting that * denotes sonic conditions, which exist at the exit state, the duct
length and the exit temperature, pressure, and velocity are determined to be

[ _ 2.3085D _ 2.3085(0.03m)

— 4.68
! 7 0.0148 "
T, 300 K
S = = 75
P =17628 ~ 11628 0K
P, 150 kPa
¥ — _ _ 55.6 kP
26958  2.6958 .
V, 139 m/s

VE =
0.4313 04313



Example: Chocked Fanno Flow

Thus, for the given friction factor, the duct length must be 4.68 m for the

Mach number to reach Ma = 1 at the duct exit. The fraction of inlet stagna-

tion pressure F,, lost in the duct due to friction is
Pm_Pg_l_P*D_l_ 1

Py Pt 1.5901

= 0.371 or 37.1%
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Example: Exit Conditions of Fanno Flow in a Duct

Air enters a 27-m-long 5-cm-diameter adiabatic duct at V;, = 85 m/s, T, =
450 K, and P, = 220 kPa (Fig. 12-63). The average friction factor for the
duct is estimated to be 0.023. Determine the Mach number at the duct exit
and the mass flow rate of air.

P, =220 kPa Ma™ =1

Exit T
=—
T, =450 K = Ma, p

V, = 85 m/s v

*

- Ll Il."'lll -

—_—

X Hypothetical duct
extension to
sonic state
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Example: Exit Conditions of Fanno Flow in a Duct

Assumptions 1 The assumptions associated with Fanno flow (i.e., steady,
frictional flow of an ideal gas with constant properties through a constant
cross-sectional area adiabatic duct) are valid. 2 The friction factor is constant
along the duct.

Properties We take the properties of air to be k = 1.4, C, = 1.005 kJ/kg-K,
and R = 0.287 kl/kg-K.

Analysis The first thing we need to know is whether the flow is choked at
the exit or not. Therefore, we first determine the inlet Mach number and the
corresponding value of the function fL*/D,,

1000 m?/s>
1 K/kg

¢, = VART, = .\,.u"'(1.4)m,28? kJ/kg-K)(450 K)( ) = 425 m/s

Vi 85m/s
c; 425 m/s

Ma, = — 0.200

Corresponding to this Mach number we read, from Table A-16, (fL*/D;), =
14.5333. Also, using the actual duct length L, we have

/L (0.023)(27 m)
D, 0.05 m

12.42 << 14.5333
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Example: Exit Conditions of Fanno Flow in a Duct

Therefore, flow is not choked and the exit Mach number is less than 1. The
function fL*/D,, at the exit state is calculated from Eq. 12-91,

g *
(fi) _ (fi> 45333 - 1242 = 21133
D, /, D,/, D,

The Mach number corresponding to this value of fL*/D is 0.42, obtained
from Table A-16. Therefore, the Mach number at the duct exit is

Ma, = 0.420

The mass flow rate of air is determined from the inlet conditions to be

P, 220 kPa ( | kJ

Pr = - 1 kPa-m’

) — 1.703 kg/m®
RT,  (0.287 kl/kg-K)(450 K)

g, = pA,V; = (1.703 kg/m?) [7(0.05 m)*/4] (85 m/s) = 0.284 kg/s
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