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Transformation of Stress

Recall the general state of stress at a point can be written in terms of
6 components: gy, 0y, 0,, Tyy™ Tyx, Tx™ Toxe Tyz™ Toy

This general “stress state” is independent of the coordinate system
used.

The components of the stress state in the different directions do

depend on the coordinate system.
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Transformation of Stress contd

* Consider a state of plane stress: 0,=1,,=1,,=0

 Where does this occur?

Outer surface




Transformation of Stress contd

* What do we want to calculate?
— Principle stresses (o maximum and ¢ minimum)
— Principle planes of stresses (orientation at which they occur)

« Slice cube at an angle 6 to the x axis (hew coordinates X', y’).
« Define forces in terms of angle and stresses.
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Transformation of Stress contd

« Sum forces in X’ direction.

O-X'AA =0, (AA cos B)COS 0+ O-y (AA sin Q)Sin e o, (AA ('()ﬁij_{»
+7,, (A4sin6)cos b+ 7., (A4cos0)sin & ryy (AA cos 6)

Tey ¢ AAsin )T

' b .2 . Y
0,'=0,cos" 0+0,smn” 0+27, sinfcosd o, (AA sin 0)

« Sum forces in y’ direction.

7,'Ad=—-0 (Adcosb)sin 6+ o (Adsin 6)cos 6 -7, (Adsin 6)sin 6+ 7, (A4 cos 6)cos 6

Ty'= (O'y -0, )cos Osmnb+r7,, (vc:os2 0 —sin’ 9)



Transformation of Stress contd

c.'=0,cos’ O+ o, sin” 6+ 27,,sin@cos @

c,+0, ©,-0, .

G, '=— 5 L+ 2 : Y cos(260)+ T sin(26)
To get oy’, evaluate ¢, at 6 + 90°.
,_o,+t0, o0,-0, - :

o,'= S T, cos(26)- Ty sin(26)
Ty = (O'y -0, )cos Osinb+7,, (cos2 6 —sin’ 49)

b 4
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O'y

sin(26)+ Ty cos(26)|

Trig identities

2sin @cos @ =sin(26) cos’ O = 1+ 0025(29)
C052 B_Sill20=COS(26) Si1129= l—COZS(ZG)
)



Transformation of Stress contd

o, '= I ;ay + 2 ;0" cos(26)+ 1, sin(ZG)‘ g,'= o ;0" s ;ay cos(26)-7,, sin(26)| |r,'=-

o, —0,

sin(26)+7,, cos(204

Now, let's perform some algebra:

Variables



Principle and Max Shearing Stress

« Define Tey
A ) ]
_1 2 O, —0, 2
O'M—E(o;+0'},) R :( 5 ’] +7,,
« Plug into previous equation / \
( \
- \2 - \2
c.+0 c_—0 O ~ —
(o"— : ”J +r2'=[ d y) +72 1\/ S
X 2 Xy 2 Xy /
(G —Cme) +751 =R 7, -

« Which is the equation of a circle with center at (o,,.,0) and radius R.
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Summary N o

tan 260, =
g, — O y
Principal Stresses
o+ o, Oy O\ ,
O max, min — = + Txy
’ 2 2




Example 1

For the state of plane stress shown in Fig., determine (a ) the
principal planes, (b ) the principal stresses, (¢ ) the maximum

shearing stress.

a. Principal Planes. Following the usual sign convention, the

stress components are

o= +50MPa o,= —10MPa 7,, = +40 MPa

Substituting into Eq. (7.12),
2Ty 2(+40) 80
o,— o, 50— (—10) 60

tan 29,, =

26, = 53.1° and 180° + 53.1° = 233.1°

0, = 26.6° and 116.6°

b. Principal Stresses. Equation (7.14) yields

a‘r+a' o — 0 \2
o == Y + . Y] + 72
max, min 2 Z

=20 = V/(30)° + (40’
Omax = 20 + 50 = 70 MPa

g

Omin = 20 — 50 = —30 MPa

10 MPa

g 40 M Pa

50 MPa
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¢. Maximum Shearing Stress. Equation (7.16) yields

- O'I—O'yz 2_\/ 2 2 __ MP
Tonax = —>) + 7% = V(30 + (40)" = 50MPa
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Example Problem 1

For the given state of stress, determine the normal and shearing
stresses after the element shown has been rotated (a) 25° clockwise
and (b) 10° counterclockwise.




Example Problem 2

Sample Problem 7.1 in Beer’s Book

A single horizontal force P with a magnitude of 150 Ib is applied to
end D of lever ABD. Knowing that portion AB of the lever has a diam-
eter of 1.2 in., determine (a) the normal and shearing stresses located
at point H and having sides parallel to the x and y axes, (b) the prin-
cipal planes and principal stresses at point H.




STRATEGY: You can begin by determining the forces and couples
acting on the section containing the point of interest, and then use
them to calculate the normal and shearing stresses acting at that point.
These stresses can then be transformed to obtain the principal stresses
and their orientation.

MODELING and ANALYSIS:

Force-Couple System. We replace the force P by an equivalent
force-couple system at the center C of the transverse section contain-
ing point H (Fig.1):

P=150lb T = (1501b)(18in.) = 2.7 kip-in.

M, = (1501b)(10in.) = 1.5 kip-in.

~
~

Fig. 1 Equivalent force-couple system
acting on transverse section containing
point H.



a. Stresses o,, oy, 7., at Point H. Using the sign convention
shown in Fig. 7.2, the sense and the sign of each stress component are
found by carefully examining the force-couple system at point C

(Fig. 1):

M 1.5 kip+in.)(0.6 in.
=0 o= +Mc_ [(ASKpIn08In) L o ek
I 7 (0.6in.)* :

Tc (2.7 kip+in.)(0.6 in.)
+— = .= +7.96 ksi
LA 17 (0.6in.)" o :
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We note that the shearing force P does not cause any shearing stress
at point H. The general plane stress element (Fig. 2) is completed to
reflect these stress results (Fig. 3).

b. Principal Planes and Principal Stresses. Substituting the
values of the stress components into Eq. (7.12), the orientation of the
principal planes is

275 2(7.96)

= = —1.80
Ox — Oy 0— 8.84

tan 20, =

29,, = —61.0° and 180° — 61.0° = +119°
6, = —30.5° and + 59.5°

Substituting into Eq. (7.14), the magnitudes of the principal stresses
are

0',+0'y+ Oy — Oy\? )
O'max,min=T— T +'Txy

0+ 8.84 0— 884\
=— + \/(T) + (7.96)* = +4.42 * 9.10

4—1 A

Filg. 2 General plane
stress element (showing
positive directions).

T(J’u = 8.84 ksi

— . = T.96 ksi

=

-

1

Fig. 3 Stress element at
point H.



Omax = +13.52 ksi

O min = —4.68 ksi

Considering face ab of the element shown, 8, = —30.5° in Eq. (7.5)
and o, = —4.68 ksi. The principal stresses are as shown in Fig. 4.

Onax = 13.52 ksi

\Zop — —30.50

.. = 4.68 ksi

min

b

Fig. 4 Stress element at point
H oriented in principal directions.
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THEORIES OF FAILURE

Yield Criteria for Ductile
Materials

4 TR P

O'I/

Fig. 7.29 Structural element under uniaxial stress.

O x <Oy
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THEORIES OF FAILURE
Yield Criteria for Ductile

Materials

principal stresses o, and

Op

<0-Y.

19

(b)

Fig. 7.30 Structural element in a
state of plane stress. (a) Stress
element referred to coordinate axes.
(b) Stress element referred to principal
axes.



2.1.1 Maximum Shear Stress Theorv for Ductile Materials

The maximum shear stress theory predicts the yielding begins whenever the
maximum shear stress in any element equals or exceeds the maximum shear
stress for the simple tension test specimen of the same material when that
specimen begins to yield.

The maximum shear stress theory predicts the yielding when:

Ss
Tmax < —- (2.1)

01—02

Tmax = =5 S5, = 0.5775,

For one dimensional problem the theory will becomes:

Tpax = \/((%)2 + r,%y) < S% 2.2)

20



Maximum Shear Stress Theory for Ductile Materials

Figure 5-7 T8

S\'
The maximum-shear-stress '
(MSS) theory for plane stress, __Casel
where o4 and og are the two
nonzero principal stresses. S,

-5, —— 74
Case 2
/S
Case 3
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Distortion Energv Theorv for Ductile Materials

The distortion energy theory predicts the yielding occurs when the distortion
strain per unit volume reaches or exceeds the distortion energy strain per unit
volume for yield in a simple tension or compression of the same material.

The distortion energy theory predicts the yielding when:

. s
o <=

(2.3)

= (01)% — (010,) + (0;)?

For one dimensional problem the theory will becomes:

Q.

6 = J(og +31%,) < Sn—y (2.4)
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Distortion Energv Theory for Ductile Materials

A
Pure shear load line (o4 = —0p = 7)

— DE
——— MSS
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Maximum Normal Stress for Ductile Materials

Sy

< (3.5)

Omax 7
Omay = The maximum stress between oy and o, without take the stress sign in

your account.

Ornax = ("?) + J(("?)z + r,%y) < Sn—’ (3.6)
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Thin-Walled Pressure Vessels

Cylindrical vessel with capped ends Spherical vessel

Assumptions

Constant gage pressure, p = internal pressure — external pressure
Thickness much less than radius (t <<r,t/r<0.1)
Internal radius =r il

Point of calculation far away from ends (St. Venant's principle) lh

25



Cylindrical Pressure Vessel

Circumferential (Hoop) Stress: o,

Sum forces in the vertical direction.

20, (tAx)— p(2rAx) =0

!I

r = X
O‘l p— p_ A
Longitudinal stress: o, [
Sum forces in the horizontal direction:

26




Cylindrical Pressure Vessel contd

There is also a radial component of stress because the gage
pressure must be balanced by a stress perpendicular to the surface.
- O, =p
— However o, << 0, and 0, , so we assume that o, = 0 and consider this a
case of plane stress.

Mohr's circle for a cylindrical pressure vessel:

— Maximum shear stress (in-plane) ™) D’
T —0-2_])" < / “.-‘ 7
max = = | 77 TN
2 4¢ r‘ { 'R
of BA 1 JA o
— Maximum shear stress (out-of-plane SR b
' E
- I E' .-
. . Pr 4=
Toax =02 = ¢ @ | @
- o, = 20, -
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Spherical Pressure Vessel

Sum forces in the horizontal direction:

o, (12727')—1)(70‘2) =0

In-plane Mohr’s circle is just a point

0'120'2:2—r . :O'l :pr
' 2 4

28



Stress Concentration

» The stresses near the points of application of concentrated loads can reach
values much larger than the average value of the stress in the member.

» Stress concentration factor, K = /c, .
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When an axial force is applied to a bar, the bar not only

elongates but also shortens in the other two orthogonal
directions.

Poisson’s ratio (v) is the ratio
of lateral strain to axial strain.

Poisson’s Ratio

N

lateral strain g, e
U — —_—,—_—— —_——
\ axial strain £, £,

v is a material specific property and is dimensionless.

Minus sign needed to obtain a positive value — all engineering
materials have opposite signs for axial and lateral strains

31
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Generalized Hooke’s Law

« Let's generalize Hooke’s Law (o=Eze).
— Assumptions: linear elastic material, small deformations

o, Vo, vo, . - Vo, Oy Vo, : [ :
*"E E E Y~ E 'E E T/
s = Yo YO, O Y
& E E E - o

()

« S0, for the case of a homogenous isotropic bar that is qaxially
loaded along the x-axis (0,=0 and 0,=0), we get

g = & & = g: — VGI Even though the stress inthe y and z

E axes are zero, the strain is not!
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Shear Strain

Recall that
— Normal stresses produce a change in volume of the element

— Shear stresses produce a change in shape of the element
Y
Shear strain (y) is an angle oy
measured in degrees or radians
(dimensionless)

Sign convention is the same as

for shear stress (1) // \

33



Shear Strain contd

« There are two equivalent ways to visualize shear strain.

Y
|ll "

« Hooke's Law for shear stress is defined as
Txy — G}/ xy sz — G}/ Xz Tyz — G)/ vz

Y

— G = shear modulus (or modulus of rigidity)
— G is a material specific property with the same units as E (psi or Pa).

34



Relation Among E, v,and G

| /1] * An axially loaded slender bar will
' , j elongate in the axial direction and
contract in the transverse directions.

P’ p=—- |

An 1nitially cubic element oriented as in
top figure will deform into a rectangular
parallelepiped. The axial load produces a
normal strain.

» If the cubic element 1s oriented as 1n the
bottom figure, 1t will deform into a
rhombus. Axial load also results in a shear
strain.

* Components of normal and shear strain are
related.

E
—=(1+v
S =1+v)

—d e —
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Example Problem 1

* A vibration isolation unit consists of two blocks of hard rubber
bonded to a plate AB and to rigid supports as shown. Knowing that a
force of magnitude P = 6 kips causes a deflection of 6=0.0625 in. of
plate AB, determine the modulus of rigidity of the rubber used.

1.25in. -

- .
1.25 in.—
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Example Problem 1 Solution

@ Example Yrblem I\

%
P2 L ¥ P= L Kips =3 A -'-,_(_(okips.)’Sk‘\ps

g sresasin Leiasi
SR ,lq A= iy Cling s 2 S CER STl oate
A i .
Al TGY =7 & X
s 15 ¥
gk ks ' '
i e N o NN, Fidoceiib” L (a80s)
A 24int 24 jn2
X- ; ) O.0625in = 0 0S5
Tl - Rla2sin )
G = 128p8) = 25co ps

37




