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Basic Steps in the Finite Element Methods

Preprocessing Phase

1. Create and discretize the solution domain into finite
elements, that is, subdivide the problem into nodes
and elements.

2. Assume a shape function to represent the physical
behavior of an element; that is, a continuous function to
represent the approximate behavior ( solution) of an
element. (Element Selection)

3. Develop equations for an element.

4. Assemble the elements to present to [resent the entire
problem. Construct the global stiffness Matrix.

5. Apply Boundary Conditions, initial conditions and loading



Basic Steps in the Finite Element Methods

Solution Phase

6. Solve a set of linear or non linear algebraic equations
simultaneously to otain nodal results, such as displacement
values at different odes or temperature values at different
nodes in heat transfer problem.

Postprocessing Phase

7. Obtain other important information such as principal
stresses and heat fluxes.



Example 1-1, Moaveni, P. 8

-<— W) Y

r FIGURE 1.1 A bar under axial loading,



Example 1-1, Moaveni, P. 8

——— w; ——

Figure 1-1
A bar under axial loading.
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Figure 1-2
Subdividing the bar into elements and nodes.
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‘The average stress o in the member is given by

LT (1.1)

The average normal strain £ of the member is defined as the change in length
per unit original length € of the member:

Al
g = (1.2)
(
Over the elastic region, the stress and strain are related by Hooke’s law,
according to the equation

o= Es (1.3)

where £ is the modulus of elasticity of the material. Combining Eqs. (1.1), (1.2),
and (1.3) and simplifying, we have

F= (A—f)if (14)
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Figure 1-3
A solid member of uniform cross section subjected to a force F.

F = (A—f)if

(1.4)

Note that Eq. (1.4) is similar to the equation for a linear spring, F = kx.
Therefore, a centrally loaded member of uniform cross section may be modeled

as a spring with an equivalent stiffness of

_AE

W

(1.5)
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Free body diagram of the nodes in Example 1.1.



Example 1-1, Moaveni, P. 8

Static equilibrium requires that the sum of the forces acting on cach node be

cro. This requirement creates the following five equations:

node 1:
node 2:
node 3:
node 4:

node 5:

Ry — ki(up — 1)) =0
Ki(ita — uy) — kol —1y) = 0
Kotz — tt2) — Ka(uy — 13) = 0
ky(uy — us) — ky(us —u,) =0
ky(us —uy) — P =0

(1.8)
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Rearranging the equilibrium equations given by Eq. (1.8) by separating the
reaction force R, and the applied external force P from the internal forces, we
have

kaey, =k, = —R,
-k, Tkt  Fhtt, —kous =0
—Kalta  HEsliy Hhatty —Kstiy =0 (1.9)
—Kitiy Ky tkguey  —kgus =0
—kuy +kyis =P
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Presenting the equilibrium equations of Eq. (1.9) in a matrix form, we have

i
—k,
0
0
0

—k;
k, + k,
—k;

0
0

0 0 0
~F 0 0
ky+ks —ki 0
kv kel =K

0 ki kg

P

\
Iy

llz
i3
114

\ U5 )

? (1.10)

It is also important to distinguish between the reaction forces and the ap-
plied loads in the load matrix. Therefore, the matrix relation of Eq. (1.10) can be

written as

ko —k
_k1 kl + kz
0 —%;

0 0
0 0

0 0
-k, 0
ol ks ks
-k ky + ky
0 -k,

{R} = [K{u} — {I}

0 I(e
0 i,
0 |4 u;
‘-k,; iy
ky | \us)

(1.12)

> (1.11)
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We can readily show that under additional nodal loads and other fixed bound-
ary conditions, the relationship given by Eq. (1.11) can be put into the general
form

{R} = [K{u} - {I} (1.12)
which stands for
{reaction matrix} = [stiffness matrix]{displacement matrix} = {load matrix}

Note the difference between applied load matrix {F} and the reaction force
matrix {R}.
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Applying Boundary Conditions
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The solution of the above matrix yields the nodal displacement values. It sho
be clear from the above explanation and examining Eq. (1.13) that for sc
mechanics problems, the application of boundary conditions to the finite elem
formulations transforms the system of equations as given by Eq. (1.11) toar
general form that is made up of only the stiffness matrix, the displacement mat
and the load matrix:
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Develop Equation for one Element

fi= keq(uie1 — 1) l fi= ket —14y)
odei de i
Wy Eas wo § o T
OR y
nodei+1 node 7+ 1
i ] u; I
= fier = Keq(tiur =) " finn =Koy —147)
(2) (b)

FIGURE 1.5 Internally transmitted forces through an arbitrary element.

nodes i and ¢ + | according to the following equations:
fi = keg(1; = wjs1)
fir1 = keq(iny = 14)
Equation (1.14) can be expressed in a matrix form by

fis) ke ke Wiy
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Elements Assembly

d. Assemble the elements to present the entire problem.
Applying the elemental description given by Eq. (1.15) to all elements and
assembling them (putting them together) will lead to the formation of the global
stiffness matrix. The stiffness matrix for element (1) is given by

~1(1) — k —kl
o= k2]

and its position in the global stiffness matrix is given by

ky, —k; 0 0 0] 4

_kl kl 0 0 0 >

[K](9) =] 0 0 0 0 0fu
0 0 0 0 Ofu

0 0 0 0 0 us
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Elements Assembly

d. Assemble the elements to present the entire problem.
Applying the elemental description given by Eq. (1.15) to all elements and
assembling them (putting them together) will lead to the formation of the global
stiffness matrix. The stiffness matrix for element (1) is given by

~1(1) — k —kl
o= k2]

and its position in the global stiffness matrix is given by

ky, —k; 0 0 0] 4

_kl kl 0 0 0 >

[K](9) =] 0 0 0 0 0fu
0 0 0 0 Ofu

0 0 0 0 0 us
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Elements Assembly

The naodal displacement matrix is shown alongside the position of element
I in the global stiffness matrix to aid us to observe the contribution of a node to
its ncighboring elements. Similarly, for clements (2), (3), and (4), we have

k -k
~1(2) — 2 2
e =| k2 Tl

and its position in the global matrix

0 0 0 0 0]u
0 k -k 0 0]u
K| =0 -k, k 0 0]|u,
0O 0 0 0 0]uy
0 0 0 0 0us
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Elements Assembly

[K](3C) =

0

(= e i e Y

K;
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(K] = [_

and its position in the global matrix
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Elements Assembly

and its position in the global matrix

00 0 0 0 |
0 0 0 0 0 |u
K] =10 0 0 0 0 | u
0 0 0 ky —ky|u
_0 0 0 —k_; k.; ] Us
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Elements Assembly

The final global stiffness matrix is obtained by assembling, or adding together,
each clement’s position in the global stiffness matrix:

[K](O) =

K]©

I K,
~k,
0
0
0

_kl
ky + ks
_kz
0
0

0
~k,
ky + k3
~k;

0

KJ09) + [K]O9) + [K]6O) + [K]“O

0

0

—ks
ki + kg

~k,

0
0
0
~k,
ky

(1.16)

Note that the global stiffness matrix obtained using elemental description, as given
by Eq. (1.16), is identical to the global stiffness matrix we obtained earlier from the
analysis of the free-body diagrams of the nodes, as given by the left-hand side of

Eq. (1.10).
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Applying Boundary Conditions

The bar is fixed at the top, which leads to the boundary condition «; = 0. The

external load P is applied at node 5. Applying these conditions results in the fol-
lowing set of linear equations.

I 0 0 0 0 | 'ul\ 0/
-k, ky + k> -k 0 0 iy 0
0 ~ks kr+ ky =k 0 |Suz2 =07 (1.17)
0 0 ks k;+ ky -k, Uy 0

. 0 0 -k ki | us) L P
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Solution Phase

6. Solve a system of algebraic equations simultaneously.
In order to obtain numerical values of the nodal displacements, let us assuime that
E = 104 X 10°1b/in® (aluminum), w; = 2in,w, = 1lin,t = 0.125in, L = 10 in,
and P = 1000 Ib. You may consult Table 1.5 while working toward the solution.

TABLE 1.5 Properties of the elementsin Example 1.1

Average Modulus of Element’s Stiffness
Cross-Sectional Elasticity Coefficient
Element Nodes Area (in®) Length (in) (1b/in?) (Ib/in)
1 1 -2 0.234375 2. 10.4 X 10° 975 X 10°
2 23 0.203125 2.5 10.4 x 10° 845 x 10°
3 3 4 0.171875 2.5 10.4 x 10 715 % 10°
4 4 5 0.140625 25 10.4 x 10° 585 x 10°
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Solution Phase

The variation of the cross-sectional area of the bar in the y-direction can be
expressed by:

Ay) = <wl + (w—zwl)y)t = <2 3+ 4 1—()2))2)(0.125) =025 — 00125y (1.18)

Using Eq. (1.18), we can compute the cross-sectional areas at each node:

A; = 0.25in? A, = 025 — 0.0125(2.5) = 0.21875 in®
A; =025 - 0.0125(5.0) = 0.1875in* A, = 025 — 0.0125(7.5) = 0.15625 in?
As = 0.125 in?
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Solution Phase

Next, the equivalent stiffness coefficient for each element is computed from the

equations
% (Aiy + ADE
oq T 20
_ (0.21875 + 0.25)(10.4 X 10%) : ,1b
. 2(25) =3 W
(0.1875 + 0.21875)(10.4 X 10°) 31b
= = )< e
ky 2(25) 845 X 10 =
_ (0.15625 + 0.1875)(10.4 X 10%) ,1b
ky = 235) =715 X 10 —
(0.125 + 0.15625)(10.4 X 10°) . 1b

.= S = 585 X 10°—
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Solution Phase

and the clemental matrices are

[K]“) -
[K](2) =
[l{](:‘) —

K] =

10°

10°

10°

975
| —975
[ 845
845
[ 715
| -715

585

| —585

—975 |
975
—845 |
845
918
715
—585 |
585
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Solution Phase

Assembling the elemental matrices leads to the generation of the global stiffness

matrix:
975 -975
—975 975 + 845
[K]© =10°| 0 —845
0 0
0 0

0
—-845
845 + 715
—715
0

0
0
=715
715 + 585
—-585

0
0
0
58
585

5
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Solution Phase

Applying the boundary condition #; = 0 and the load P = 1000 Ib, we get

1
-975
0

0
1820
—845

0
—845
1560
=715

0

0 0

0 0
=715 0
1300 =585
-585 585
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Solution Phase

Because in the second row, the —975 cocfficient gets multiplied by «; = 0, we need
only to solve the following 4 X 4 matrix:

1820 -845 0O 0 t 0
| ¥ 1560 =715 0 | ) 0
0 =715 1300 —585| ] u, 0

0 0  -585 585 | |us) | 10°

The displacement solution is #;, = 0,%, = 0.001026 in, w«; = 0.002210 in,
1w, = 0.003608 in, and #5 = 0.005317 in.

’

\
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Post processing Phase
Obtaining Stress in each element

AoE

f Keq(ttiv) — zl,) ( (tis1 = ) E(:lm - u,-) (1.19)
Vo l— —. — ‘ :
Aa\'g Aan Aa\vg (

Since the displacements of different nodes are known, Eq. (1.19) could have been
obtained directly from the relationship between the stresses and strains,

o= Ee= E( ol - "") (1.20)
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Post processing Phase
Obtaining Stress in each element

Employing Eq. (1.20) in Example 1.1, we compute the average normal stress for
each element as

5 = 10.4 X 10%)(0.001026 — 0
oW g Bl | )~ 4263 2
( 2.5 in?
2 = U 10.4 ¥ 10%)(0.002210 — 0.001026
0 = E U " 4 ( )( ) . 4925£;
{ 2.5 in®
- 10.4 x 10%)(0.003608 — 0.002210
RO i B L L 2sgi
¢ 235 in?
= 10.4 % 10%)(0.005317 — 0.003608
o = E(u5 : u4> " ( ) > 3608) = 7109 .Ib,
- in°
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P =10001b

Figure 1-6
The internal forces in Example 1.1.
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Post processing Phase

Obtaining Stress in each element

In Figure 1.6, we note that for the given problem, regardless of where we cut a
section through the bar, the internal force at the section is equal to 1000 Ib. So,

f 1000 Ib

M = = = 61—

7 T Ay 0234375 in’

— 1000 b
i

A - 0203125 - PR

m

f 1000 b
(3) = — = 5818 —
BT M 'DTIBTE s
0 & o 1000 b

= 7111 —

Aye  0.140625 in
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Post processing Phase
Obtaining Stress in each element

Reaction Forces For Example 1.1, the reaction force may be computed in a num-
ber of ways. First, referring to Figure 1.4, we note that the statics equilibrium at
node 1 requires

R, = ky(u; — 1t;) = 975 X 10°(0.001026 — 0) = 1000 Ib
The statics equilibrium for the entire bar also requires that
R, = P = 1000 Ib

As you may recall, we can also compute the reaction forces from the general
reaction equation

{R} = [K[{u} — {F}
or

{reaction matrix} = [stiffness matrix]{displacement matrix} — {load matrix}
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Post processing Phase

Obtaining Stress in each element

Because Example 1.1 is a simple problem, we do not actually need to go through
the matrix operations in the aforementioned general equation to compute the
reaction forces. However, as a demonstration, the procedure is shown here. From
the general equation, we get

rRl\
R,
R,

)

\RSJ

10°

075

=975
0
0
0

=075
1820
—-845
0
0

0

—845

1560

=715
0

0 o 1( o ) 0

0 0 0.001026 0
-715 0 |<0.002210 0
1300 —585 | | 0.003608 0
-585 585 | L 0.005317 L 107

where Ry, Ry, R;, R,, and R; represent the reactions forces at nodes 1 through 5
respectively. Performing the matrix operation, we have

le
R;
R;
Ry
\ Rs

\

/

(—1000)
0

0
0
0

\ /
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Matlab Code Results

275000
-975000
0

0

0

o T e Y e Y |

1000

-975000
1820000
—845000
0
0

0
—845000
1560000
715000

0

0
0
—-T715000
1300000
—585000

0

0

0
—-585000
285000
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d:

0
0010256
0022091
0036077
0053171

e I i R

reactions =

-1000

results =

0.00041026
0.00047337
0.00055944
0.00088370

4266,
48923,
2818.
7111.

N R

1066.
1076,
1080.
1111.

-1

T~ I Vv



