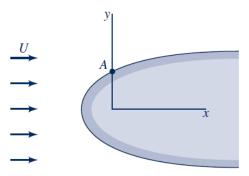
<u>Quiz 3</u>

A body having the general shape of a half-body is placed in a stream of fluid. At a great distance upstream the velocity is U as shown in Fig. 1. Show how a measurement of the differential pressure between the stagnation point and point A can be used to predict the free-stream velocity, U. Express the pressure differential in terms of U and fluid density. Neglect body forces and assume that the fluid is nonviscous and incompressible.



Velocity potential Laplace's equation		$\mathbf{V} = \mathbf{\nabla} \boldsymbol{\phi}$ $\mathbf{\nabla}^2 \boldsymbol{\phi} = 0$	(6.65) (6.66)
Uniform potential flow	$\phi = U(x\cos\alpha + y\sin\alpha)$	$\sin \alpha) \psi = U(y \cos \alpha - $	$(x \sin \alpha) u = U \cos \alpha$ $v = U \sin \alpha$
Source and sink		$\psi = \frac{m}{2\pi}\theta$	
Vortex	$\phi = \frac{\Gamma}{2\pi} \theta$	$\psi = -\frac{\Gamma}{2\pi} \ln r$	$v_{ heta} = 0$ $v_r = 0$
	211	211	$v_{ heta} = rac{\Gamma}{2\pi r}$
Doublet	$\phi = \frac{K\cos\theta}{r}$	$\psi = -\frac{K\sin\theta}{r}$	$v_r = -\frac{K\cos\theta}{r^2}$
			$v_{ heta} = -rac{K\cos heta}{r^2}$
$u = \frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}$ $v =$	$= \frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x}$	$v_r = \frac{\partial \phi}{\partial r} = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$	$v_{ heta} = rac{1}{r} rac{\partial \phi}{\partial heta} = -rac{\partial \psi}{\partial r}$
Stalvas Equation	-		

Navier-Stokes Equation

(x direction)

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial p}{\partial x} + \rho g_x + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$

(y direction)

$$\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = -\frac{\partial p}{\partial y} + \rho g_y + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right)$$

(z direction)

$$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = -\frac{\partial p}{\partial z} + \rho g_z + \mu\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right)$$