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GENERAL COMMENTS
• Pressure variations can be sensed between the upper and lower 

surfaces of a wing. 

• The low-pressure region over the wing causes fluid from the high-
pressure region below the wing to flow around the wing tip, creating a 
vortex in the region of the wing tip. 

• As a consequence, the lift force per unit span decreases toward the wing 
tips. 

• In Fig. 7.1 a, there is a chordwise variation in the pressure differential 
between the lower surface and the upper surface. 

• In Fig. 7.1 b, there is a spanwise variation in the lift force.

• As a result of the spanwise pressure variation, the air on the upper 
surface flows inboard toward the root. 

• Similarly, on the lower surface, air will tend to flow outward toward the 
wing tips.



Aerodynamic load 
distribution for a 
rectangular wing in 
subsonic 
airstream:

(a) differential pressure 
distribution along the 
chord; 

(b) lift distribution.



Tip Vortices

• The flows from the upper surface and the lower surface join at the 
trailing edge, the difference in spanwise velocity components will 
cause the air to roll up into a number of streamwise vortices, 
distributed along the span. 

• These small vortices roll up into two large vortices just inboard of the 
wing tips (Fig. 7.2 ). 

• Very high velocities and low pressures exist at the core of the wing-
tip vortices. 

• In many instances, water vapor condenses as the air is drawn into the 
low-pressure flow field of the tip vortices. 

• Condensation clearly defines the tip vortices of the Shuttle Orbiter 
Columbia on approach to a landing at Kennedy Space Center (Fig. 7.3 
), where the vortices are very evident due to the high water vapor 
content of the air at this geographic location.



Generation of the trailing vortices due to the 
spanwise load distribution:

(a) view from bottom; 
(b) view from trailing edge; 
(c) formation of the tip vortex
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Smoke-flow pattern showing tip vortex.



Condensation marks the wing-tip vortices of the Space 
Shuttle Orbiter Columbia.







Vortex System
• In order to model the flow of air around the wing mathematically, we 

customarily assume: 

1. that the vortex wake, which is of finite thickness, may be replaced by an 
infinitesimally thin surface of discontinuity, designated the trailing 
vortex sheet, and 

2. that the trailing vortex sheet remains flat as it extends downstream 
from the wing. 

• An important difference in the 3-D flow field around a wing (as compared 
with the 2-D flow around an airfoil) is the spanwise variation in lift. 

• Since the lift force acting on the wing section at a given spanwise location 
is related to the strength of the circulation, there is also a corresponding 
spanwise variation in circulation, such that the circulation at the wing tip is 
zero (the lift at the wing tip is zero?). 

• A suitable distribution of vortices would represent the physical wing in 
every way except that of thickness. 



VORTEX SYSTEM
• In Prandtl’s approach, the vortex system consists of:

• the bound vortex system

• the trailing vortex system

• the “starting” vortex

• The “starting” vortex is associated with a change in circulation that might 
occur as the wing begins moving or as the angle of attack changes during 
flight.

• The representation of the wing by a bound vortex allows a relation to be 
established between:

• the physical load distribution for the wing (which depends on the wing geometry and 
on the aerodynamic characteristics of the wing sections) and  the trailing vortex system

• This relation allows to quantify the impact of the trailing vortex system on the 
lift and drag of the wing, and the difference between the wing airfoil sections 
and the infinite-span airfoil sections.



Prandtl Lifting Line Theory (PLLT)

Bound Vortex

Tip Vortex

Three dimensional version of Bound Vortex Theory  

A  continuous line  of  bound  vortices  terminating at the  wing tips with  “tip 
vortices” that continue downstream to the “starting vortex”.  



LIFTING-LINE THEORY FOR UNSWEPT WINGS

• We are interested in developing a model that can be used to estimate the 
aerodynamic characteristics of a wing which is unswept (or is only slightly 
swept) and which has an aspect ratio of 4.0 or greater. 

• The spanwise variation in lift, ℓ ( y ), is similar to that in Fig. 7.1 b.

• Prandtl and Tietjens (1957) hypothesized that each airfoil section of the 
wing acts as an isolated two-dimensional section, provided that the 
spanwise flow is not too great. 

• Each section of the finite-span wing generates a section lift equivalent to 
that acting on a similar section of an infinite-span wing having the same 
section circulation. 

• The lift acting on an incremental span-wise element of the wing is related to 
the local circulation through the Kutta-Joukowski theorem. That is,

)()( yUyl  



LIFTING-LINE THEORY FOR UNSWEPT WINGS
• In Prandtl’s approach, the spanwise lift distribution is represented by a 

system of vortex filaments, the axis of which is normal to the plane of 
symmetry and which passes through the aerodynamic center of the 
lifting surface.

• The aerodynamic center is at the quarter chord, we will place the 
bound-vortex system at the quarter-chord line. 

• The strength of the bound-vortex system at any location (y) is 
proportional to the local lift acting at that location ℓ ( y ). 

• Helmholtz stated that a vortex filament has constant strength along its 
length. Therefore, we will model the lifting character of the wing by a 
large number of vortex filaments (i.e., a large bundle of infinitesimal-
strength filaments) that lie along the quarter chord of the wing. 

• This is the bound-vortex system, which represents the spanwise loading 
distribution, as shown in Fig. 7.4 (a), and is known as the lifting line . 



7.4.a.Schematic trailing-vortex system.



• At any location y, the sum of the strengths of all of the vortex filaments in 
the bundle at that station is (y). 

• When the lift changes at some location, the total strength of the bound-
vortex system changes proportionally [i.e.,  (y) ]. 

• But Helmholtz also stated that vortex filaments cannot end in the fluid. 
Therefore, the change (y) is represented by having some of the 
filaments from our bundle of filaments turn 90° and continue in the 
streamwise direction (i.e., in the x direction). 

• The strength of the trailing vortex at any y location is equal to the change 
in the strength of the bound-vortex system. 

• The strength of the vortex filaments continuing in the bound-vortex 
system depends on the spanwise variation in lift and, therefore, depends 
upon geometric parameters such as the wing planform, the airfoil 
sections that make up the wing, the geometric twist of the wing, etc. 

• If the strength of the vortex filaments in the bundle changes by the 
amount , a trailing vortex of strength  must be shed in the x 
direction.



LIFTING-LINE THEORY FOR UNSWEPT WINGS

• The vortex filaments that make up the bound-vortex system do not 
end in the fluid when the lift changes, but turn backward at each end 
to form a pair of vortices in the trailing-vortex system. 

• For steady flight conditions, the starting vortex is left far behind, so 
that the trailing-vortex pair effectively stretches to infinity. 

• The three-sided vortex, which is termed a horseshoe vortex , is 
presented in Fig. 7.4 a. 

• For practical purposes, the system consists of the bound-vortex 
system and the related system of trailing vortices.

• Also included in Fig. 7.4 a is a sketch of a symmetrical lift distribution 
(the variation is the same on each half of the wing), which the vortex 
system represents.



Vortex System
• A number of vortices are made visible by using a smoke generation system 

for the flow over a Boeing 747 wing. Flow from the wing tip region and two 
other locations can be seen leaving the trailing edge on each wing and then 
rolling up into two counter-rotating vortice. 

• This shows why it is important to include shed vorticity from along the 
entire span. 

• These streamwise vorticity filaments correspond to the trailing vortices 
shed by the spanwise variation in vorticity across the wing.

• Conventional Prandtl lifting-line theory (PLLT) provides reasonable 
estimates of the lift and induced drag until boundary-layer effects become 
important. 

• Therefore, there will be reasonable agreement between the calculations 
and the experimental values for a single lifting surface having no sweep, no 
dihedral, and an aspect ratio of 4.0 or greater, operating at relatively low 
angles of attack. 



Streamwise vorticity shedding along the trailing edge of a Boeing 
747 rolling up into wing-tip vortices.



FINITE WINGS

http://upload.wikimedia.org/wikipedia/commons/0/08/Airplane_vortex.jpg
http://www.eng.vt.edu/fluids/msc/gallery/vortex/7848b.htm


Note: MINIMUM SEPARATION RULES

• An aircraft of a lower wake vortex category must not be allowed to 
take off less than two minutes behind an aircraft of a higher wake 
vortex category

• American Airlines Flight 587 crashed into the Belle Harbor 
neighborhood of Queens in New York City shortly after takeoff 
from John F. Kennedy International Airport on November 12, 2001. 
This was the second deadliest U.S. aviation accident to date.

A nautical mile (nm) is a unit of distance, set by international agreement as 1852 meters.



Note: EXAMPLE: 737 WINGLETS

http://www.penmachine.com/photoessays/2004_08_aerial2/14-wing.jpg
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Note:      Finite  Wing vortex

http://www.airliners.net/open.file?id=790618&size=L&sok=JURER  (ZNGPU (nvepensg,nveyvar,cynpr,cubgb_qngr,pbhagel,erznex,cubgbtencure,rznvy,lrne,ert,nvepensg_trarevp,pa,pbqr) NTNVAFG ('%2B"777"' VA OBBYRNA ZBQR))  beqre ol cubgb_vq QRFP&photo_nr=341


Note: Horseshoe Vortex

• Replace finite wing (span = b) with bound vortex filament extending 
from y = -s= -b/2 to y = s = b/2 and origin located at center of bound 
vortex (center of wing)

• Helmholtz’s vorticity theorem: A vortex filament cannot end in a 
fluid
• Filament continues as two free vorticies trailing from wing tips to infinity
• This is called a ‘Horseshoe Vortex’



Trailing Vortices and Downwash
• A consequence of the vortex theorems of Helmholtz is that a bound-vortex system does 

not change strength between two sections unless a vortex filament equal in strength to 
the change joins or leaves the vortex bundle. 

• If (y) denotes the strength of the circulation along the y axis a semi-infinite 
vortex of strength  trails from the segment y. 

• The strength of the trailing vortex is given by:

• Assume that each spanwise strip of the wing (y) behaves as if the flow 
were locally 2-D. 

• Consider the semi-infinite vortex line, parallel to the x axis (parallel to the 
free-stream flow) and extending downstream to infinity from the line 
through the aerodynamic center of the wing.

• The vortex at y induces a velocity at a general point y1 on the aerodynamic 
centerline, wy1:

y
dy

d







Geometry for the calculation of the induced 
velocity at y = y1.



Trailing Vortices and Downwash

• To calculate the resultant induced velocity at any point y1 due to the 
cumulative effect of all the trailing vortices, the preceding expression is 
integrated with respect to y from the left wing tip (-s) to the right wing tip 
(+s) (s = b/2):

• The resultant induced velocity at y1 is w in a downward direction (i.e., 
negative, since the majority of filaments are rotating in that direction) and is 
called the downwash . 

• As shown in the sketch of Fig. 7.6 , the downwash angle is 
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7.6- Induced flow.



Downwash

• The downwash velocity component has the effect of “tilting” the 
undisturbed air, so the effective angle of attack of the airfoil at the 
aerodynamic center (the quarter chord) is:

• The significance of this reduction in the effective angle of attack is that 
the airfoil section produces less lift and has a new component of drag. 

• Since the direction of the resultant velocity at the aerodynamic center is 
inclined downward, the effective lift of the section of interest is inclined 
aft by the same amount. 

• Therefore, the effective lift on the wing has a component of force 
parallel to the undisturbed free-stream air which is a drag force.
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Note: FINITE WING DOWNWASH

• Wing tip vortices induce a small downward component of air velocity 
near wing by dragging surrounding air with them

• Downward component of velocity is called downwash, w

Local relative wind

• Two Consequences:

1. Increase in drag, called induced drag (drag due to lift)

2. Angle of attack is effectively reduced, eff as compared with U∞

Chord lineU

U



Note: ANGLE OF ATTACK DEFINITIONS

geometric: what you see, what you would see in a wind tunnel

Simply look at angle between incoming relative wind and chord line

This is a case of no wing-tips (infinite wing)

Relative Wind, U∞ geometric



Note: ANGLE OF ATTACK DEFINITIONS

effective: what the airfoil ‘sees’ locally

Angle between local flow direction and chord line

Smaller than geometric because of downwash

The wing-tips have caused this local relative wind to be angled 
downward

effective



Note: ANGLE OF ATTACK DEFINITIONS

geometric: what you see, what you would see in a wind tunnel

Simply look at angle between incoming relative wind and 
chord line

effective: what the airfoil ‘sees’ locally

Angle between local flow direction and chord line

Small than geometric because of downwash

:induced difference between these two angles

Downwash has ‘induced’ this change in angle of attack

  effectivegeometric



Note: FINITE WING DOWNWASH
• Recall: Wing tip vortices induce a downward component of air velocity 

near wing by dragging surrounding air with them

  


 








 



s

s

dy
yy

dy

d

U
y

1

1
4

1




i

 
 

 
 

















 


U

yw
y

U

yw
y

1
1

11

1 tan





Equation for induced angle of attack
along finite wing in terms of (y)

Small angle



Note: INFINITE WING DESCRIPTION

• LIFT is always perpendicular to the RELATIVE WIND

• All lift is balancing weight

LIFT

Relative Wind, U∞U



FINITE WING DESCRIPTION

• Relative wind gets tilted downward under the airfoil

• LIFT is still always perpendicular to the RELATIVE WIND

  effectivegeometric

Finite Wing Case



Note: FINITE WING DESCRIPTION

• Drag is measured in direction of incoming relative wind (that is the 
direction that the airplane is flying)

• Lift vector is tilted back

• Component of L acts in direction parallel to incoming relative wind 
→ results in a new type of drag

  effectivegeometric

Finite Wing Case

Induced Drag, Di

U



Drag-due-to-lift
• This drag force is a consequence of the lift developed by a finite wing 

and is termed vortex drag (or the induced drag or the drag-due-to-lift ). 

• As a result, the lift generated by a finite-span wing composed of a given 
airfoil section, which is at the geometric angle of attack e , is less than 
that for an infinite-span airfoil composed of the same airfoil section and 
which is at the same angle of attack .

• Based on the Kutta-Joukowski theorem, the lift on an elemental airfoil 
section of the wing and the total lift are:

• The vortex drag is given using the small angle assumption

• The minus sign results because a negative value of w produces a positive 
drag force
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drag-due-to-lift

• and the total vortex drag is given by:

• Notice that for the 2-D airfoil the circulation strength  is constant 
across the span (i.e., it is independent of y ) and the induced 
downwash velocity is zero at all points since there are no trailing 
vortices. 

• Therefore, Dv = 0 for a 2-D airfoil. 

• As a consequence of the trailing vortex system, the aerodynamic 
characteristics are modified significantly from those of a two-
dimensional airfoil of the same section, which we will now quantify.
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Case of Elliptic Span-wise Circulation 
Distribution

• An especially simple circulation distribution, which also has significant 
practical implications, is given by the elliptic circulation distribution

• For the elliptic circulation distribution the induced downwash velocity is 
found from equation
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Note: ELLIPTICAL LIFT DISTRIBUTION
• For a wing with same airfoil shape across span and no twist, an elliptical lift 

distribution is characteristic of an elliptical wing planform

http://images.google.com/imgres?imgurl=http://www.stelzriede.com/ms/photos/planes/v1spit.jpg&imgrefurl=http://www.stelzriede.com/ms/html/sub/marshwvw.htm&h=452&w=401&sz=19&tbnid=vudGzyWC8gMJ:&tbnh=124&tbnw=110&start=2&prev=/images?q%3Dbritish%2Bspitfire%26hl%3Den%26lr%3D


Elliptical Wing Plan-form 

• The Republic P-47 Thunderbolt and Super-marine Spitfire Fighter Aircraft of 
World War II Both Had Elliptical Wing Plan-forms 

Republic P-47 
Thunderbolt

Super-marine 
Spitfire



Note: Elliptic-circulation distribution 
and the resultant downwash velocity.

Points to Note:

1. At origin (y=0) =0

2. Circulation varies elliptically with 
distance y along span

3. At wing tips (-s)=(s)=0

 Circulation and Lift → 0 at wing 
tips



Elliptic Circulation Distribution

• Now we can integrate this expression to obtain:

• Since the elliptic loading is symmetric about the pitch plane of the 
vehicle (i.e., y = 0 ), the velocity induced at a point y1 = +a should be 
equal to the velocity at a point y1 = -a.

• This can only be true if I = 0. Therefore, for the elliptic circulation 
distribution the downwash is:

• which is the very interesting result that the induced velocity is 
independent of the spanwise position on the wing.

• The total lift for the wing is given by the Kutta-Joukowski theorem as:
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Case of Elliptic Spanwise Circulation 
Distribution

• The lift equation can be made easier to integrate by using the coordinate 
transformation:

Y=-s cos dy = s sin  d

• where the left wing tip corresponds to  = 0 and the right wing tip corresponds to 
= , resulting in:

• This expression can now be integrated to find:

• and the lift coefficient for the wing is:
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• From this equation, we can find the mid-span circulation as:

• We can also find the downwash angle since:

• The downwash angle is constant along the span of the wing.

• Similarly, we can calculate the total induced drag for the wing.

• Introducing the coordinate transformation again, we obtain:
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Elliptic Spanwise Circulation Distribution

• and the drag coefficient for the induced component is

• Using the relation for 0 , the vortex drag coefficient becomes:

• The induced drag is zero for a 2-D airfoil (i.e., a wing with an aspect ratio (AR) of infinity). 

2

0

0

2
2

0

8
sincos1

4



   






ds
s

Dv

SU
SUSU

D
C v

Dv 2

2

0

2

2

0

2 4

2

1
8

2

1























AR

C

b

SC

bSU

SUC
C LLL

Dv


 2

2

2

222

222

4

4








Comparison with 
Experiments

• Experimental drag polar for a wing 
with an aspect
ratio of AR=5 compared with the 
theoretical induced drag



Comparison with Experiments
• The induced drag coefficient given by equation and the measurements for a 

wing whose aspect ratio is 5 are compared. 

• The experimental values of the induced drag coefficient closely follow the 
theoretical values up to an angle of attack of 20°. 

• The relatively constant difference between the measured values and the 
theoretical values is due to the influence of skin friction, which was not included 
in the development. 

• Therefore the drag coefficient for an incompressible flow is typically written as:

• where CD0 is the drag coefficient at zero lift and kC2
L is the lift-dependent drag 

coefficient. 

• The lift-dependent drag coefficient includes that part of the viscous drag and of 
the form drag, which results as the angle of attack changes from 0l.

2

0 LDD kCDC 





Technique for General Spanwise
Circulation Distribution

• Consider a spanwise circulation distribution that can be represented by a 
Fourier sine series consisting of N terms:

• The spanwise coordinate (y) has been replaced by the  coordinate:

y = -s cos

• A sketch of one such Fourier series is presented on next slide. 

• Since the spanwise lift distribution represented is symmetrical, only the odd 
terms remain.

• The section lift force is found by applying the Kutta-Joukowski theorem:

 nAsU
N

n sin4)(
1



 nAUsUl
N

n sin4)()(
1

2 



Symmetric 
spanwise lift 

distribution as 
represented by 

a sine series.



• To evaluate the coefficients A1, A2, A3, …, AN, it is necessary to determine 
the circulation at N spanwise locations. 

• the N-resultant linear equations can be solved for the AN coefficients. 

• The series is truncated to a finite series and the coefficients in the finite 
series are evaluated by requiring the lifting-line equation to be satisfied 
at a number of spanwise locations equal to the number of terms in the 
series. 

• This method is known as the collocation method.

• Recall that the section lift coefficient is defined as

• Using the local circulation to determine the local lift per unit span, we 
obtain
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General Spanwise Circulation Distribution

• It is also possible to evaluate the section lift coefficient by using the linear 
correlation between the lift and the angle of attack for the equivalent 2-D 
flow. 

• We now have two expressions for calculating the section lift coefficient at a 
particular spanwise location . 

• We equate the two expressions to form an important equation

• Let the equivalent lift-curve slope (dCl/d)0 be designated by the symbol a0.

• Since e =  - , the two equations can be combined to yield the relation:
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• Note that five parameters in the equation may depend on the spanwise 
location  (or y ) at which we will evaluate the terms. 

• The five parameters are: 
1. , the local circulation; 

2. , the downwash angle, which depends on the circulation distribution; 

3. c , the chord length, which varies with  for a tapered wing planform; 

4. , the local geometric angle of attack, which varies with  when the wing is 
twisted; and 

5. 0l, the zero lift angle of attack, which varies with  when the airfoil section 
varies in the spanwise direction (aerodynamic twist ). 

Using equation (7.3), we can find the induced angle of attack in terms of 
the downwash velocity as:
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General Spanwise Circulation Distribution

• Using the Fourier series representation for   and the coordinate 
transformation, we obtain:

• Equation (7.25) can now be rewritten using the above relation:

• Since                                          , the equation becomes:
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Technique for General Spanwise
Circulation Distribution

• Defining  = ca0/8s, the resultant governing equation is:

• which is known as the monoplane equation. 

• If we consider only symmetrical loading distributions, only the odd 
terms of the series need to be considered. 
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Lift on the Wing
• The lift on the wing can now be found using equation (7.22):

• Using the Fourier series for () we find that:

• Noting that sin A sin B = ½ cos(A - B) – ½ cos(A + B), the integration yields

The summation represented by the second term is zero, since each of the terms 
is zero for n  1. 
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Lift on the Wing
• Therefore, the integral expression for the lift becomes:

• and the wing lift coefficient is:

• The lift depends only on the magnitude of the first coefficient, no matter how 
many terms may be present in the series describing the distribution

• Note that local lift coefficient is:
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Vortex-Induced Drag

• The vortex-induced drag can also be found.

• The integral can be evaluated as:



Vortex-Induced Drag
• So, the coefficient for the vortex-induced drag is:

• Since A1 = CL/ ( AR), we can re-write the equation as

• where only the odd terms in the series are considered for a symmetric 
lift distribution (n = 1, 3, 5, …).
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Vortex-Induced Drag
• where e is the span efficiency factor of the wing and e = 1/ (1 + ) . 

• Typical values for the span efficiency factor range between 0.6 and 0.95, with e = 1 
being the value for an elliptic lift distribution. 

• In general, values of e should be as close to e = 1 as possible to improve the 
aerodynamic efficiency of the wing. 

• The induced drag factor  is given by:

• which is the elliptic distribution.

• The effect of the taper ratio on the spanwise variation of the lift coefficient is 
illustrated in Fig. 7.13 . 

• Theoretical solutions are presented for untwisted wings having
taper ratios from 0 to 1. 

• The wings, which were composed of NACA 2412 airfoil sections, all had an aspect 
ratio of 7.28. 
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Effect of taper ratio
• The local lift coefficient has been divided by the overall lift coefficient for the 

wings according to:

• The values of the local (or section) lift coefficient near the tip of the highly 
tapered wings are significantly greater than the overall lift coefficient for that 
planform. 

• This result is important relative to the separation (or stall) of the boundary layer 
for a particular planform when it is operating at a relatively high angle of attack, 
since a highly loaded tip will stall first, placing any ailerons in the unsteady flow 
field downstream of the stall region
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7.13- Effect of taper 
ratio on the spanwise 
variation of the lift 
coefficient for an 
untwisted wing.

• Theoretical solutions are presented for 
untwisted wings having taper ratios from 
0 to 1. 

• The wings, which were composed of 
NACA 2412 airfoil sections, all had an 
aspect ratio of 7.28. 



Change in the wing lift-curve slope.
• Lifting-line theory can also predict the change in the wing lift-curve 

slope.

• Since each airfoil section is “seeing” an effective angle of attack which is 
less than the geometric angle of attack, the lift of the wing is reduced. 

• The geometric angle of attack is given by  = e + , the downwash angle 
for an elliptic lift distribution is  = CL/AR, then the geometric angle of 
attack for an elliptic lift distribution is:

• Taking the derivative of this equation with respect to the lift coefficient:
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Change in the wing lift-curve slope.
• which can be re-arranged to obtain:

• This is the lift-curve slope for a wing with an elliptic lift
distribution, which can be extended to a general lift distribution in a similar fashion to 
the induced drag in equation (7.29) by the addition of a lift-curve slope parameter, 

• The slope parameter can be obtained from the Fourier coefficients in a similar fashion to 
, but it is common to show the parameter graphically. 
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Nomenclature for wing/airfoil lift.



Induced drag as a function of taper ratio.

• Fig. 7.14 a shows the induced drag parameter, , for planar wings 
with non-elliptic lift distributions as a function of taper
ratio and aspect ratio, and Fig. 7.14 b shows the slope parameter, .

• Notice that both parameters have high values at low taper ratios 
(pointed wing tips) as well as fairly high values at high taper ratios 
(rectangular wings). 

• Each parameter is minimized (and the impact of the wing on induced 
drag and lift-curve slope reduction is minimized) when the taper ratio 
is = 0.3 - 0.4 . 

• A trapezoidal wing with this taper ratio approximates an elliptic 
planform shape and gives the best results for lift and drag.



Figure 7.14a Effect of aspect ratio and taper ratio on: 
induced drag parameter. 



Figure 7.14b Effect of aspect ratio and taper ratio on: lift-curve 
slope parameter. Airfoil lift-curve slope is assumed to be 2π⁄rad.



• Once the local lift coefficient reaches the stall angle of attack of the airfoil 
section, the local airfoil will be stalled, creating a region of flow separation 
in that vicinity. 

• As the angle of attack is further increased, stall patterns will form on the 
wing, depending on the local lift coefficient variation along the span. 

• Sketches of stall patterns are presented in Fig. 7.15. 

• The desirable stall pattern for a wing is a stall which begins at the root 
sections so that the ailerons remain effective at high angles of attack. 

• The spanwise load distribution for a rectangular wing indicates stall will 
begin at the root and proceed outward, which is a favorable stall pattern. 

• The spanwise load distribution for a wing with a moderate taper ratio ( = 
0.4) approximates that of an elliptical wing (i.e., the
local lift coefficient is roughly constant across the span). 

• As a result, all sections will reach stall at essentially the same angle of 
attack.



Figure 7.15   Typical stall 
patterns: 
(a) rectangular wing, λ
= 1.0; 
(b) moderately 
tapered wing, 
λ = 0.4; 
(c) pointed wing, 
λ = 0.0.



• Tapering of the wing also reduces the wing-root bending moments, since 
the inboard portion of the wing carries more of the wing’s lift than the tip. 

• Furthermore, the longer wing-root chord makes it possible to increase the 
actual thickness of the wing while maintaining a low thickness ratio, which 
is needed if the airplane is to operate at high speeds also. 

• While taper reduces the actual loads carried outboard, the lift coefficients 
near the tip are higher than those near the root for a tapered wing.

• Therefore, there is a strong tendency to stall near (or at) the tip for highly 
tapered (or pointed) wings.

• In order to prevent the stall pattern from beginning in the region of the 
ailerons, the wing may be given a geometric twist, or washout, to decrease 
the local angles of attack at the tip.

• The addition of leading-edge slots or slats toward the tip increases the stall 
angle of attack and is useful in avoiding tip stall and the loss of aileron 
effectiveness.





Solution



Solution







Figure 7.17   
Comparison of the 
theoretical and 
the experimental 
lift coefficients 
for an unswept
wing in a subsonic 
stream (wing is 
that of Fig. 7.16 ).





Spanwise distribution of 
the local lift coefficient



Figure 7.19   
Comparison of the 
theoretical 
induced drag 
coefficients and 
the measured drag 
coefficients for an 
unswept wing in a 
subsonic stream



PANEL METHODS
• Panel methods, have been developed to compute the flow about a thin 

wing at a small angle of attack so that the resultant flow may be assumed to 
be steady, inviscid, irrotational, and incompressible.

• The configuration is modeled by a large number of elementary quadrilateral 
panels. 

• For each elementary panel, one or more types of singularity distributions 
(such as sources, vortices, and doublets) are attached. 

• These singularities are determined by specifying some functional variation 
across the panel whose actual value is set by corresponding strength 
parameters (source strength, vortex strength, etc.). 

• These strength parameters are determined by solving for appropriate 
boundary condition equations, and once the singularity strengths have been 
determined, the velocity field and the pressure field can be computed. 



Representation of an airplane flow field by panel 
(or singularity) methods.



Boundary Conditions

• The boundary conditions for the flow field determine the singularity 
strengths for a panel method. 

• Fluid flow boundary conditions associated with Laplace’s equation are 
generally of analysis or design type. 

• Analysis conditions are employed on portions of the boundary where 
the geometry is considered fixed, and resultant pressures are desired. 

• The permeability of the fixed geometry is known; hence, analysis 
conditions are of the Neumann type (specification of normal velocity). 

• Design boundary conditions are used wherever a geometry
perturbation is allowed for the purpose of achieving a specific pressure 
distribution. 

• Here a perturbation to an existing tangential velocity vector field is 
made; hence, design conditions are fundamentally of the Dirichlet type 
(specification of potential). 



Boundary Conditions
• If the surface of the configuration is impermeable, the normal component 

of the resultant velocity must be zero at every point of the surface ( 
𝜕∅

𝜕𝑛
=

0 ). 

• Once a solution for  has been found the pressure coefficient at each point 
on the surface of the boundary can be computed. 

• To achieve both a specified pressure distribution and a normal flow 
distribution on the surface, the position of the surface must, in general, be 
perturbed, so that the surface will be a stream surface of the flow field. 

• The total design problem is thus composed of two problems:

• The first is to find a perturbation potential for the surface that yields the 
desired distribution for the pressure coefficient and 

• the second is to update the surface geometry so that it is a stream surface 
of the resultant flow. 



Solution Methods
• The first step in a panel method is to divide the boundary surface into a 

number of panels. 

• A finite set of control points (equal in number to the number of singularity 
parameters) is selected at which the boundary conditions are imposed. 

• The construction of each network requires developments in three areas: 

(1) the definition of the surface geometry, 

(2) the definition of the singularity strengths, and 

(3) the selection of the control points and the specification

of the boundary conditions.

• Numerous computer codes using panel-method techniques have been 
developed since the 1960s, the variations depending mainly on the choice 
of type and form of singularity distribution,
the geometric layout of the elementary panels, and the type of boundary 
condition imposed. 

• The VLM predicts the experimental data very well.



VORTEX LATTICE METHOD
• The VLM represents the wing as a surface on which a grid of horseshoe 

vortices (from lifting-line theory) is superimposed.

• The velocities induced by each horseshoe vortex at a specified control point 
are calculated. 

• A summation is performed for all control points on the wing to produce a 
set of linear algebraic equations for the horseshoe vortex strengths that 
satisfy the boundary condition of no
flow through the wing. 

• The vortex strengths are related to the wing circulation and the
pressure differential between the upper and lower wing surfaces. 

• The pressure differentials are integrated to yield the total forces and 
moments.

• The continuous distribution of bound vorticity over the wing surface is 
approximated by a finite number of discrete horseshoe vortices. 

• The individual horseshoe vortices are placed in trapezoidal panels (also 
called finite elements or lattices). 



Coordinate system, 
elemental panels, 
and horseshoe 
vortices for a typical 
wing planform in the 
vortex lattice 
method.



VORTEX LATTICE METHOD
• The bound vortex typically coincides with the quarter-chord line of the 

panel (or element) and is, therefore, aligned with the local sweepback 
angle. 

• The vortex lattice panels are located on the mean camber surface of the 
wing and, when the trailing vortices leave the wing, they follow a curved 
path.

• Suitable accuracy can be obtained using linearized theory in which straight-
line trailing vortices extend downstream to infinity. 

• We assume that the trailing vortices are parallel to the axis of the vehicle. 

• This orientation of the trailing vortices is chosen because the computation 
of the influences of the various vortices
(the influence coefficients) is simpler. 

• Furthermore, these geometric coefficients do not change as the angle of 
attack is changed. 



7.26.Distributed horseshoe vortices representing the 
lifting flow field over a swept wing.



VORTEX LATTICE METHOD
• Application of the boundary condition that the flow is tangent to the wing 

surface at “the” control point of each of the 2N panels (i.e., there is no flow 
through the surface) provides a set of simultaneous equations in terms of 
the unknown vortex circulation strengths. 

• The control point of each panel is centered spanwise on the three-quarter-
chord line midway between the trailing-vortex legs.

• Consider the flow over the swept wing in Fig. 7.26 . 

• Notice that the bound-vortex filaments for the port (or left-hand) wing are 
not parallel to the bound vortex filaments for the starboard (or right-hand) 
wing. 

• Thus, for a lifting swept wing, the bound-vortex system on one side of the 
wing produces downwash on the other side of the wing. 

• This downwash reduces the net lift and increases the total induced drag 
produced by the flow over the finite-span wing. 



VORTEX LATTICE METHOD

• The downwash resulting from the bound-vortex system is greatest 
near the center of the wing, while the downwash resulting from the 
trailing-vortex system is greatest near the wing tips. 

• So, for a swept wing the lift is reduced both near the center and near 
the tips of the wing. 



Note: FINITE WING CHANGE IN LIFT SLOPE
• In a wind tunnel, the easiest 

thing to measure is the 
geometric angle of attack

• For infinite wings, there is no 
induced angle of attack
• The angle you see = the angle the 

infinite wing ‘sees’

• With finite wings, there is an 
induced angle of attack
• The angle you see ≠ the angle the 

finite wing ‘sees’

  effgeom

Infinite Wing

Finite Wing

geom= eff +  eff

geom= eff + 



FINITE WING CHANGE IN LIFT SLOPE

• Lift curve for a finite wing has a 
smaller slope than corresponding curve 
for an infinite wing with same airfoil 
cross-section

• Figure (a) shows infinite wing,  = 
0, so plot is CL vs. geom or eff and 
slope is a0

• Figure (b) shows finite wing,  ≠ 0

• Plot CL vs. what we see, geom, 
(or what would be easy to 
measure in a wind tunnel), 
not what wing sees, eff

1.Effect of finite wing is to reduce lift curve 
slope

• Finite wing lift slope =  = dCL/d

2.At CL = 0,  = 0, so L=0 same for infinite or 
finite wings

Infinite Wing

Finite Wing



SUMMARY
•

Induced drag is price you pay for generation of lift

• CD,i proportional to CL
2

• Airplane on take-off or landing, induced drag major component
• Significant at cruise (15-25% of total drag)

• CD,i inversely proportional to AR
• Desire high AR to reduce induced drag
• Compromise between structures and aerodynamics
• AR important tool as designer (more control than span efficiency, e)

• For an elliptic lift distribution, chord must vary elliptically along span
• Wing planform is elliptical
• Elliptical lift distribution gives good approximation for arbitrary finite 

wing through use of span efficiency factor, e



High Aspect Ratio

Minimizing Induced Drag
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REALLY HIGH ASPECT RATIO
• L/D ratios can be over 50!

• Aspect ratio can be over 40

• All out attempt to reduce induced drag

Glider

Unmanned



EXAMPLE: NASA HELIOS

• Helios: solar-electric flying wing, designed to operate at extremely high 
altitudes for long duration, remotely piloted aircraft, AR = 31:1

• Helios Prototype designed to fly at altitudes of up to 100,000 feet on single-
day atmospheric science and imaging missions, as well as perform multi-day 
telecommunications relay missions at altitudes from 50,000 to 65,000 feet.

• Helios Prototype set world altitude record for winged aircraft, 96,863 feet, 
during a flight in August 2001 

• Flight at 100,000 ft. is quite similar to that expected in the Martian 
atmosphere, so data obtained from the record altitude flight will also help to 
build NASA's data base for future Mars aircraft designs and missions 



Elliptical Plan-form

Minimizing Induced Drag
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Minimizing Induced Drag



NASA B-727 Wingtip Vortex Test Flight

Why Winglets?
• Equivalent to span extension w/o increased wingspan

• Reduces wingtip vortices

• Reduces drag



Winglets


