Dr./ Ahmed Nagib Elmekawy

Feb. 28, 2017



Review of Fluid

Mechanics




" JE
Review: Fluid Kinematics -Acceleration Field
s Consider a fluid particle and Newton's second law,
F o =m 7]

particle pariele™ particle

m The acceleration of the particle is the time derivative of the

particle's velocity. dVv_
- _|':|IH|"|.£I'.-E
d grifele —
e dt
s However, particle velocity at a point is the same as the fluid
velocity,

m To take the time derivative of V, chain rule must be used because.

i’,r::zr.‘ iele = = I;{ ,r::z.- .:fel[ ) .]' particle {\f:] parricle {\f ]]

E _ EF fﬁl + EI'! dI,rJ:zrr.‘.:.fe + EV d.ljpﬂrrfc.'e GFT dz,ﬁ-ﬂrrﬁ:.‘e
particls

of dt cox di v di 0z di




Acceleration Field

lIjil‘:!':l,r.'lﬂr".l'r."'nt' 'I:f.-]"!_.'.lﬂn'.l'r.':'.'_‘ dz

m Since 28T _ w,—= = 1.~!L"”'r*= W
dl dl dl
. 'l 4 ol cl cl
then A particle = A tU— T V—+ W—
ct cx cy cz

m Invector form, the acceleration can be written as

- dv v - T T
ﬂ(I,JL’,E_,f}: r ={: _|._“,-’ v}p V Wi+V JF—I—HJk
' ol
- 0= 0 =
Where: V=—i+—j +—ﬁ<:
ox oy Oz

m First term is called the local acceleration and is nonzero only for
unsteady flows.

m Second term is called the advective acceleration and accounts
for the effect of the fluid particle moving to a new location in the
flow, where the velocity is different.
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Acceleration Components

The components of the acceleration are:

T . S | S
Vector equation: e = F UVt W
{ &x gy oz
X- component ciul ou  Gu Cil
a, ==—+U—+V—+ W=
ot ox oy oz
ov  ov Oy v
Y-component 4 =—+U—+V—1tw—
oot ox oy oz
cw  ow  ow ow
4, =—/—Ftu_—FV_—+w_—
Z-compo nent ot o oy oz

Question: Give examples of steady flows with acceleration

1 _'.'l.ll._l:|l|:

Incompressible Steady ideal — -
flow in a variable-area duct B E =
- _.-f"L_' —
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ST I"'E.Gm' | I"IE.S m A Streamline is a curve that

Point (c+dx, y+ ) 7 is everywhere tangent to the
instantaneous local velocity
vector,

= Consider an arc length
dr = dxi +dyj +dzk

m 4F must be parallel to the
local velocity vector

Streamline

V =ui +vj + wk

s (Geometric arguments results
in the equation for a
streamline

dr dx dy dz dy _v

L —




Properties of Streamlines

m A streamline can not have a sharp corner ' A
s Two streamlines can not intersect or meet at a sharp cerner
s Mo flow across a tube formed by streamlines (steam tube).

P Tl o, ™, |_-—-—"""-_
shreaminbsy wslls b

-\._._.-.:-_.
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sire wiml i
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Conservation of Mass Differential CV

TS

di pr ]a_'h)

r'imn ) dz

pl.u

Infinitesimal control volume /’
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Area of right

-9

— J—

(_c.rrr - a[pmﬁ) dy dz =

%
.1
™
h
%
L
A
*

Eiltpu X s

face = dy dz

X

diput) elx
dy dz
(p“ d 1)

------- b

N T
#

ax 2
(pi ) dx dy al

B

A

_'EI'-P[-'.] d_'l') ﬂl.[ ':Ir:

Mass flow rate through
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Conservation of Mass Differential CV

= Now, sum up the mass flow rates into and out of the 6 faces of the CV

| MNet mass flow rate into CV: |

;ﬁ;m (;m— &i::j %) dy dz + (,fm - %%) dr dz + (,mr EBF::I i—j) dx dy

Net mass flow rate out of CV:
Plug into integral conservation of mass equation

Zm:ﬂ (;m+ agmjd;) dy dz + (,m +%%‘r) dr dz + (,ﬂw+ag}:} 5 ) dx dy

Rate of change of the control volume mass:

) )
;dzdydz—f “"dv YN oi-Y m

iTL out
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Conservation of Mass Differential CV

m After substitution,

dp d(pu) d(pv) d(pw)
Ldzdydz = — drdydz — dzdydz — dzdyd
g Y es oz yes oy oY gr 4%

s Dividing through by volume dxdydz

cp d(pu) c(pv) c(pw
P, (f’”+ (f’"’)+ (f’"’)zo
ct cxX cy cz

Or, if we apply the definition of the divergence of a vector

V=ui+vj+wk

% +V- (p]}") —0 where . i
L A Ly
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Conservation of Mass: Alternative forms

m Use product rule on divergence term
— e -

% 5. (o7) =2 47 Vo4 o9 T =0

Dp

P vV =0

Dt
l% V.V =0 I7=u.?+u}+wa
P 0~ 0+, 07
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Conservation of Mass: Cylindrical coordinates

s There are many problems which are simpler to solve if the
equations are written in cylindrical-polar coordinates

m Easiest way to convert from Cartesian is to use vector form and
definition of divergence operator in cylindrical coordinates

The Divergence Operation

Cartesian coordinates:
—F — - " .
V-(pV)= _'1_ (pu) + -2 (pu) + 9 (pw) 2 H,

dax 1+'|- 0z I /
Cylindrical coordinates:

v (pV) = Y

1 rpu) 1 pu) 9pu)
1 L o 2

rod roodf dz

-______.!"'-

=¥

1]
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Conservation of Mass: Cylindrical

coordinates
S — — -
Vero ot at V =Usér +Upéy + Use,

Op , 10(rpU;) | 10(pUs) , 9(pUs)

At T | e r Of 0z
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Conservation of Mass: Special Cases

m Steady compressible flow

5 )=

\Y (pﬂ' =0
o(pu) o(pv) O(pw) _
Cartesian O + Oy * Oz =0
dp 10(rpU 1 0(pU d(pU
Cylindrical i i (rpUr) il o), i (els) =)

gt |\r | Or r o 02z

‘o]
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Conservation of Mass: Special Cases

m Incompressible flow

dp
p = constant, and hence Frie 0
— — V_= 1_ VE—I—PLE
V-V=0| ;¢ .z

- X oy Oz

ou  ov ow

+—+—=0
Cartesian ox oy oz

1
Cylindrical — — L — | =0
T‘l
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Conservation of Mass

s Ingeneral, continuity equation cannot be used by itself to
solve for flow field, however it can be used to

1. Determine if a velocity field represents a flow.
2. Find missing velocity component

Example

For an incompressible flow

2 2 2
u=x+y +z

v=xy+yz+z

w="

Determine: w, required to satisty the continuity equation.

p)

_ z
Solution :w=-=-3xz - S +c(x, y)

—
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Conservation of Momentum
Types of forces:

1. Surface forces: include all forces acting en the boundaries of a
medium though direct contact such as pressure, friction,..etfc.

2. Body forces are developed without physical contact and
distributed over the volume of the fluid such as gravitational
and electromagnetic.

m The force 6F acting on 8A may be resolved into two components,
one normal and the other tangential to the area.

Arbitrary
surface

o]
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Stresses (forces per unit area)

Surface of

¢ : constant x

'..-;__

Surface of
constant -x

fTLH — -

() ()

£
Double subscript notation for stresses.

« First subscript refers fo the surface
+ Second subscript refers to the direction
+ Use o for normal stresses and 1 for tangential stresses

9]
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Momentum Conservation

m From Newton's second law: Force = mass *
= Consider a small element 3x dy 3z as shown

The element experiences an

acceleration

acceleration

mE-p{ﬁxc‘i}E:][ o uEiV + ‘)
D ct cx cy
Y [ as 1t 15 under the action of various forces:

S x

Z

e

V—+ w—

Oz JJ

normal stresses, shear stresses, and gravitational force.

m The stresses at the center of the element are presented by the

stress tensor: B -
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Surface forces in the x direction acting on a

fluid element. ;
0 '.'r |:':I'I-JE.|_ x 5z

p ey 2

I : » [f_-. r]T “Ja ¢ By

l — 1':l1_'|'
| ;
.":'{F,_,_I:-,,-l_ l ':"1;._ | -"-"El',_-I GKl & &
e i - - - [ — —| OV &2
. . ]ﬂ i1 7 if— : H“-_ |Il!.1',.,+ _:'_r' x 3 i
- EEp—— EES—— R
.,-'""I r HH'
|~ I H-““ﬂ-_
I 3= i i —
|I!'-I+f I"l—'|ﬂ'l.ﬂ". gl V4 . d T
i 7 2 ra l". H'“m.__
| Il'n, | |
X . _ — .
| e - e &) dx & f\,y |
| P dy 2 II a | Ty Ty
T=|= . | T T
|
\| T ).' T, O
X -
N,

Consider only the forces in the x direction acting on all six surfaces
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- Momentum BﬂlﬂHCE!CﬂHT} oF, =dF +dF,,

or.. &N
OF =(o. + 8% E}@'&—{JE—FJ DG+ (1, +—2 D) e
cx 2 cx 2 ady 2
ET -'.: - -,
(== Dy (r,+ L By — (1, - By - pg e
gy 2 oz 2 oz

Net force acting along the x-direction:

o or, . . . OT. . . . e .
L AXO YOz ——Ox0ydz + —=0xdyoz +‘pgxéx.-§l Voz
X . CX X :
MNormal stress Shear stresses Body force

oF =dma, = oF,_+dF _=dma_
The differential equation of motion in the x-direction is:

T cT or cu cul ol cu
oo - H'u+ ﬂjx+ HH =P{ﬂ + U — +‘Le'HI—+H"H—]I —————— {-ﬂ']l
ox ay 54 ot cx cy o

Similar equations can be obtained for the other two directions
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Forces acting on the element

Surface forces
f EF:"E - ™
F, = L Tox , B o555

ﬁx oy 5}: )

E?'r“ do,, .-:rr N
2 e ~ |0x0y 0z
S\ x oy |z

ot, Ot, dJo
oF, =| =&+ ——+—=& |5xdydz /—
{ 7 SR, SRR ;. J i

L

Body forces
OF,, = pg,oxdyodz

oF,, = pg,oxdyoz
oF,, = pg,0x0yoz
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Equation of Motion (momentum eq.s)

oF = dma_ oF, +doF = dma_
oF = dma_ — a‘.TF_',,J_ - .:i’:n = EZE'.I'!EI_T
aoF, = dna, aF,_ = adF = dma_
fo,, ©OT, @&t fu  fu  fu  Cu
g t+——t——t——=p(—tU—tV—tW—)—————— (a)
cx oy Oz ot cx oy oz
¢r, C¢o, 0Or, v v év v
T e e 2 e e L (h)
ox oy cz o  ox Qy oz
ér, OT, éo, ow ow ow  Ow
pg.+— ot =p UV W) (c)
cx oy oz ct ox oy oz

General differential equation of motion for a fluid.

Unknowns ----- stresses  Velocities
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Conservation of Linear Momentum

s Unfortunately, this equation is not very useful
10 unknowns
= Stress tensor, T: 6 independent components

llr:F.LT r.T: T'E
T =| 1-'..T I:T r - 4
= MNote: |Ta Ty Ox|
r,=7,, T.=7, and T, =7,

= Density o :J

= Velocity, V': 3 independent components
4 equations (continuity + 3 momentum)
& more equations required to close problem!

]
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Navier-Stokes Equations

s For Newtonian fluids the stress tensor components have some

definitions.

m Substituting the stress tensor components into the equation of
motion with produce the well-known Navier-Stokes equations

that are suitable only for Newtonian Fluids:

m 5tress tfensor components:

ov  ou

Ty ST =l _—+—)
dx ¢y
___ .ow  du
T, =T, =u—+—)
cx ©z
cv  ow
T =7_=ul—+—)
yz i =
dz Oy

2 —~ -
O =—~(P+= 1V V) + 2 —
3 CxX
o, =—(p+=uv V)= 2u s
L 3 E.}.-'
2 ow

ag.=—(p+—uv- F)+2;fT
3 ¢z

v




"

Navier-Stokes Equations

[he cp C cu 2= - C cv  Cu
p—=pg, Lt 2= SV )]+ (= + )]
Dr cx ox cx 3 cy = ox oy

C ow  Cu
+—[pu(—+—)] (a)
iz ox Oz
[ ) C cv  Cu ¢ cv 2= =
p—=pg, - L+ [+ )]+ — (2= - =T )]
Dt gy ox oOx @y Y cy 3
3, ov  ow
+—[p(—+—)] (b)
0z &z Oy
Dw op O cw  Cu ¢ ov ow
p—=pg, —— +—lul—+ )]+ —lul—+—)]
Dt oz OX ox Cz cy cz Oy
S, cw 2= =
+ | u(2——==V.)) (c)
5% 3" )]

R_
momentum

Hrl_
momentum

I‘
momentum

]
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Navier-Stokes Equations

= For Newtonian fluids the stress tenser components have some
definitions.

m Substituting the stress tensor components into the equation of
motion with produce the well-known Navier-Stokes equations
that are suitable only for Newtonian Fluids:

m 5tress tfensor components:

fy =T =M+ ) (p+217.7)+ 202
— wy = .-.,_ .-.,— ﬂ-.'l:'.:l.' ji— +_ I e + IT
oy & &y P ; L L ~
i | . :'. 2 _ :I:
rt=rﬂ=ﬁ{'—iﬁ r:_u] g o, =—(p+= v.;f}_zﬁf:_l
ox o©z : 3 Y

o oW 2 = A

r.=7, =ul—+—) o =—(p+= ¥V -T)+2u oW
¢z oy 3 —5:

o]
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Navier-Stokes Equations

= For incompressible flow with censtant dynamic viscosity:

D C &u u u
= x-momentum  p—=pg — Loy (a)
D1t cx cx ) L o
Dy & g'v  @'v @'
= Y- momentum p—=;g}_—ﬂ—ﬂ+|u{ﬂ s+t —+—) (b)
D1 oy x°  ove oz
Dy C &'w &w o'u
‘l.' A A -1__' A H ] H
" Z-momentum ;:'—=,ﬂgz—n—p+.ﬂ{ﬂ s+t—+t—) (¢
Dt 0z ox- oy oz

m Invector form, the three equations are given by:

DV = . 117 .IncﬂmprE:ﬁsible MNSE
P Dt =P8 —Vp+uv'l written in vector form

o]
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Navier-Stokes Equations

m For incompressible fluids, constant w:
s Continuity equation: V.V =0

- -

B TTERA S ) B P L) P LA
cx X 'V cx 'V o2 CxX oz
12 2]+ (5 + T+ [ "Z‘“" 1]}—

o ou eu o v 0w
U=+ —+—)+ p(—+——+ )=
ox ) = by oxcy cxoz
ou ocu ou cd cu oW ow
H——+—+—F)+tpu—(—+7~+—)=
x~ gy = ox ox Sov oz

=7 =7 e
d'u ocu ou )
Mot +—5)=uVu
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Navier-Stokes Equations

= For incompressible flow with censtant dynamic viscosity:

D C c'u cu cu

B xX- momentum J;}—:Jﬂgx—ﬂ—}]—‘u{ﬂ -+ —+—) (a)
Dt cx cx” ¢y oz
Dv é 8v &v 8

= Y- momentum p—=;:ﬂgj_—ﬂ—F+|u{ﬂ -t —t+—) (h)
Dt ay X" oy” ez
Dw cp Flw &'w

o zmomentum 2o pp P E0 0 Ty (g
Dt Oz cx-  ¢oy- oz

m Invector form, the three equations are given by:

DV 277 Incompressible NSE
=pF —Vp+ V¥ -ompr
P Dt - prH written in vector form

o]




" S
Navier-Stokes Equation

m The Navier-Stokes equations for incompressible flow in vecter
form:

DV -
—— = —=Vp+pg+uVVv
Dt EEFIEE Incompressible NSE

3 written in vector form
v -V=10

m This results in a closed system of equations!
4 equations (continuity and 3 momentum equations)
4 unknowns (U, V, W, p)

s Inaddition to vector foerm, incompressible N-S equation can be
written in several other forms including:

Cartesian coordinates
Cylindrical coordinates
Tensor notation

o]
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Euler Equations

m For inviscid flow (p = 0) the momentum equations are given by:

cu  cu cp

= x- momentum {—+u—+1=—+H—]I PE, —— (a)
ct ox oy oz cx
cv oV OV cV op
= Y- momentum f—+f-‘ YVt W) =08, - (B)
ot ox  cy Cz Toooy
{Ew cw  COw . Ew} cp ©
s 7-maomentu AN— Tl — V—W——)l=p0g, —— c
£-mom m ct ox  ay cz Cz
m Invector form, the three equations are given by:
DV _ | ,
o =pz —Vp Euler equations
Dt written in vector form

i
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Differential Analysis of Fluid Flow
Problems

s  Now that we have a set of governing partial dif ferential
equations, there are 2 problems we can solve

1, Calculate pressure (P) for a known velocity field

2. Calculate velocity (U, V, W) and pressure (P) for known
geometry, boundary cenditions (BC), and initial conditions
(IC)
m There are about B0 known exact solutions to the NSE
m Solutions can be classified by type or geometry, for example:
1, Couette shear flows
2. Steady duct/pipe flows (Poisseulle flow)

o]



oundary condifions

Mo-slip boundary condition

m For a fluid in contact with a
solid wall, the velocity of the
fluid must equal that of the
wall

=

Viiuid = Vwall

Interface boundary condition

'E‘”“,;d = ﬂ% + Dj

Magnifying = When two fluids meet at an

'} Piston glass interface, the velocity and
flie Vitwia = V] shear stress must be the
same on both sides
Fluid B ey IFA _ ﬁﬁ Ts,A = Ts,B
=. (] H
A iTsB s If surface tension effects
_\__i-—-‘_-_-:'-""’ """ AT are negligible and the
oinil Va ik surface is nearly flat

Fluid A Py =Py




Example exact solution

Fully Developed Couette Flow

m For the given geometry and BC's, calculate the velocity and
pressure fields, and estimate the shear force per unit area

acting on the bottom plate

m Step 1: Geometry, dimensions, and properties

v (u=V at y=h)
= —— -
Moving plate —r M
Fluid: p, g h
. )
¥ y

Fixed plate x = |I—-1

(u=0 at v=0)

]
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Fully Developed Couette Flow

m Step 2: Assumptions and BC's #" force /
—_

1 Assumptions
1.
2,

3.

e B

Plates are infinite in x and r
5 f z .

Flow is steady, /¢t =0 : w—
Parallel flow, v =0 Vs
Incompressible, Newtonian, laminar, constant properties
No pressure gradient

2D,w=0,8/cz=0

velocity
—_— .

Gravity acts in the -y direction, & = —& j 5,578

-1 Boundary conditions

1.

2,

Bottem plate (y=0) - no slip condition: u=0, v=0, w=0
Top plate (y=h) : no slip condition: u=V, v=0, w=0

o]
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Fully Developed Couette Flow

m Step 3: Simplify 2
Continuity ou -|-%ZZ+ :
dx
U
=
Ox

X-moment

%ﬁ%ﬁﬁwﬁﬁﬂ

Nota: thasa numbars refar
to the assumptions on the
previous slice

This means the flow is "fully developed”
or not changing in the direction of flow




Fully Developed Couette Flow

o ETEpH Simplify, cont.
Y-momentum

234}'—‘ /Z- : ; i 3
apP ; 321 &
c"fiy -:"]z Ay T Py Tl e T o Wy 22

—-PE =D p = p(y)

- ent
2.6 - }@ 8
EEFI ap & &2 °
(%L%H—’ ——/ﬁ+p(/ﬂlz + +/ﬁ‘g)
&p op _dp _

= U =p(y)

-, _ III%-'r'
iz oy dy '
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Fully Developed Couette Flow

m Step 4. Integrate

ent
ﬂfZ‘u. integrate QU integrate
gz = 0= o =C=pu(y) = Cry + (>
y=momentum
d integrate
n=r = p(n)=—pgy+ G
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Fully Developed Couette Flow
u(y) = Cry + Cs

m Step 5: Apply BC's
Y=0,u=0=C(0)+C; = C:=0
Y=hu=V=Ch = C,=V/h

This gives 1y
u(y) =V

1 For pressure, no explicit BC, therefore C; can remain an
arbitrary constant (recall only VP appears in NSE).

s et P=Pg at y = 0 I:Ca renamed F.:.}

1. {Hydmstatic pressure

‘ P (.V ) — P 0 _ ,ﬂg}f 2. | Pressure acts independently of flow
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Fully Developed Couette Flow

m Step 6: Verify solution by back-substituting into differential
equations

' Given the solution (u,v,w)=(Vy/h, O, O)

du v Jw
B 0, 5; = (), T 0
— Continuity is satisfied
0+0+0=0

1 X-momentum is satisfied

;(QE+U§£+V{)E+!‘VQ(—]-)——8—€+ +4(02U+82U+820)
P\t "oz 7" By 9z) " "oz PETH\o2 T o2 T 022

p((H-V%-O-’r()-V/h-%-O-O) =—0+p-0+pu(0+0+0)
0=0
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Fully Developed Couette Flow

m Finally, calculate shear force on bottom plate

Y op Cu V
uly)=V= T =1_= u—+ = [—
W)=V | =0 T =tu=H o) =1y
Shear force per unit area acting on the wall
F V.
—_ =Ty = =1
U

Nete that 1, is equal and oppesite to the
shear stress acting on the fluid 1,
(Mewton's third law).
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Parallel Plates (Poiseuille Flow)

= Given: A steady, fully dEveInFed, laminar flow of a Newtonian
fluid in a rectangular channel of two parallel plates where the
width of the channel is much larger than the height, h, between
the plates.

= Find: The velocity profile and shear stress due to the flow.

Assumptions:

= Entrance Effects Neglected
s No-Slip Conditien

= Mo vorticity/turbulence

]




Additional and
Assumptions

Fully developed flow.
THEREFORE..

Highlighted Important

The width is very large compared to the height of the plate.
No entrance or exit effects.

Velocity can only be dependent on vertical location in the

The pressure drop is constant and in the x-direction only.

flow (u)

v=w=0
¢
TP = Constant =
ox

A _ :
_p? where L 1s a lengthn x.

]
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Boundary Conditions

m No Slip Condition Applies
Therefere, aty=-aandy = +a, usvaw = 0
m The bounding walls in the z direction are often ignored. If we
don't ignore them we also need:

z=-W/2 and z = +W/2, u=sv=w = 0, where W is the width of
the channel.

y=-a Fixed plate

&

. X . 2d

Fluid flow direction

il

y=a Fixed plate

T



Incompressible Newtonian Stress

Tensor

Now, we cancel terms out based
on our assumptions. T =

This results in our new tensor:
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Navier-Stokes Equations

In Vector Form for incompressible flow:

ov
pl — |+ pveVv==Vp+ 1N°v+ pg
ct
Which we expand to component form:

X - component

i a - Y a [ a2 a2 2
Cti cu  Ou i op & U u cu
):1 | +u —= _.LIIH +HH |=_ - +.I‘IJI L T + - - - +-II::E-J:
\ or ax oy oz | dx | éx” oy =~
V- COMmponent ;
£ = - - = =T - % )
oV o oy oV i oV 7Y 7V |
—+U—+V—tW— =t U — =+ |+ 28,
ot cx Ty 0z cy oxs  oy. &z

Z-component:
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Reducing Navier-Stokes

X -component.

[g+H%H,,;:W;]z-_w{sg_d_g}%

Y =-C0m [}DHEH'[ .
2
§v

Z-component.

W%Hﬁlﬁ%%ﬁw
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N-S equation therefore reduces to

-, .-,2
- : ¢ - u
X - component —H—F+,qu L pg =0
cx cy- .
, cp
y - component. -——+pg = 0
cy '
cp

z- Cﬂﬂ'\PﬂﬂEﬂT: -+ g, = 0
o2 )

Ignoring gravitational effects, we get

cp &’u
- t — s u——=0
X - componen o TH P
cp , :
y - component: —— =0 pis not a function of y
cy p is a function

of x only

, . ,
Z - cnmpananf:—ﬁ—p = ﬂ‘ p is not a function of z
0z




Rewriting (4), we get
6 u _lop
oy

]
a

—(3)

L OX

pis a function of x only and (sis a constant and
therefore RHS is a function of x only

uis a function of v only and therefore LHS is a
function of y enly

Therefore (B) gives, function of (y) = function of (x) = constant

%)
It means ﬂ = _P = constant
L cx

That is, pressure gradient in the x-direction is a constant.

LHS = left hand side of the equation
RHS = right hand side of the equation
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Rewriting (5), we get
&'u 1 dp _—4Ap

P G
where ﬁf —;—p is the constant pressure gradient in the
X
x-direction

Since u is only a function of y, the partial derivative becomes an
ordinary derivative,

Therefore, (B) becomes

d’u Ap

& __,E —(7)

-
-

¥
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ntegrating (6), we get

Ap y
H=—E?- v+ G, (8)
where C, and C, are constants to be y=a Fixed plate
determined using the boundary y t
conditions given below: ]
X e, Za
u =10 at V=a no-slip Fluid flow direction
boundary !
u =0 at y== condition | y =—u Fixed plate
Substituting the boundary conditions in (8), we get —
Ap a
C =0 C,= =
_ and L2
Therefore, (8) reduces to Ap ¢ 5
S 2L (‘I =Y ) Parabolic
velocity profile

i




Steady, incompressible flow of Newtonian fluid in a pipe
- fully developed pipe Poisuille flow

Fixed pipe

£,
:
r
]_ z Fluid flow direction Za

r

Inviscid Core

i

Boundary Layer

Entrance Length
Developing Flow

-
}‘ Fully Developed Flow
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Laminar Flow in pipes

.STE_ﬂd'}‘r Laminar pipe flow. Invisaid Core Boundary Layer
Assumptions: -

Vo=V, = 0

v, =v,(r)

E =E i.e. pressure 1s a linear of z, |® Enh'un:Eu Length o ™

oz dz Developing Flow ully Developed Flow

The above "assumptions” can be obtained from the single
assumption of "fully developed” flow.

In fully developed pipe flow, all velocity components are assumed to
be unchanging along the axial direction, and axially symmetric i.e.:

Now look at the z-momentum equaticn.




JE—
Results from Mass/Momentum

The removal of the indicated terms yields:

]dp fLJﬂ

I
For\. or

c
cr

7. a:fz

Or rearranging, and substituting for the pressure gradient:

1 d | le_ldp

— ;_

In a typical situation, we would have control over dp/dz. That is,
we can induce a pressure gradient by altering the pressure at one
end of the pipe. We will therefore take it as the input to the

system (similar to what an electrical engineer might do in testing

a linear system).
d [r dv_ | rdp

dr -

dr | u dz

"]
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Laminar flow in pipes

Integrating once gives:

=
. | —— {
[”d“z\‘_f‘_ff_ﬂ )

= +C Pt = |
ﬁff';‘l 2‘.{.!' ﬁfE : & _:__,__.-" )

But at r = O velocity = max or dv,/dr=0 ——  (;=0

fr' dvzj rt dp Divide by r 'fﬁfl’:J r o dp
= - =
L dr 21 dz L dr 2u dz

Integrating one more time gives:

2
v -,—d—p—l—fﬁ
4 dz , :
at pipe wall r = a velocity = 0——() = id—*ﬁ_p C—— (.= —ﬂ—d—p
L odz 4 dz
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Laminar flow in pipes

Substituting in the velocity equation gives:

2 2
i =F

- dp_ﬂj dp __dp

. (&
4 dz dudz dz  4u
Volume flow rate is obtained from:
Q = J FEIIIA — > Q — Irinﬂz .?IT'FEdJ”"
dp
T(——) 4
dz [ (.2 2 _
= rla> = ldr —— 0=
Q 2“” J.P={|' ( }i SJI.I'
4
(]
1280 | dz

"]
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Laminar flow in pipes

Average velocity, v,,= Q/area

Lo_AD [ dp| AD° _ D [ _dp
SE128u | dz) 4 32u | dz

Maximum velocity at r = O: e ™

dp a’ dp D*
1L’I::msl:r. == p {_ - = F { . } ‘ S
dz 4u dz 16u

= 1
vauergae = Vinax

Shear stress:

dp (‘2”) u (—)- Su(2ee )

= (==

dr dz
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Laminar flow in pipes

Drag Ceoefficient:

2 ﬂv ave
Coefficient of friction: f = 4 C.




