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GIVEN A velocity field is given by V = (V,/€) (=xi + ¥j)
where V,, and { are constants.

FIND At what location in the flow field is the speed equal to
V,? Make a sketch of the velocity field for x = 0 by drawing ar-
rows representing the fluid velocity at representative locations.



SoLuTION

The x, v, and z components of the velocity are given by
u= —Vyx/t,v = Vyy/{.and w = 0 so that the fluid speed, V, is

V=@ +v"+w)" = %(ﬁ +yH)? (1)

The speed is V = Vat any location on the circle of radius { centered
at the origin [(x* + y*)"/* = (] as shown in Fig. E4.1a. (Ans)

The direction of the fluid velocity relative to the x axis is given
in terms of # = arctan (v/u) as shown in Fig. E4.1b. For this flow
v _ Voy/t

t H = — = =
o u —Vox/{ —x

Thus, along the x axis (y = 0) we see that tan # = 0, so that
6 = 0° or # = 180°. Similarly, along the y axis (x = () we ob-
tain tan # = Zoosothatd = 90° or # = 270°. Also, fory = O we
find V = (—V,x/0)i, while for x = 0 we have V = (Vyy/()j,



indicating (if V;; = 0) that the flow is directed away from the ori-
gin along the y axis and toward the origin along the x axis as
shown in Fig. E4.1a.

By determining V and 6 for other locations in the x—y plane, the
velocity field can be sketched as shown in the figure. For example,
on the line y = x the velocity is at a 45° angle relative to the x axis
(tan @ = v/u = —y/x = —1). At the origin x = y = 0 so that
V = 0. This point is a stagnation point. The farther from the origin
the fluid is, the faster it is flowing (as seen from Eq. 1). By careful
consideration of the velocity field it is possible to determine consid-
erable information about the flow.

COMMENT The velocity field given in this example approx-
imates the flow in the vicinity of the center of the sign shown in
Fig. E4.1c. When wind blows against the sign, some air flows
over the sign, some under it, producing a stagnation point as
indicated.
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The Stream Function, y(x,y)

e Consider the continuity equation for an incompressible 2D flow
au 8v

—=0
X ay
* Substituting the clever transformation. w(x.v)
* Defined as: . 8@& (%b
U= — V= ———
* Gives 8y oz

8 8 0 ,0 O
= v ( l//) (— W) =0 This is true for any smooth
8X Gy 6)( oy oy 2 function y(x,y)

so that it alwayssatisfies the continuity eq.

u using stream
function

}two unknows > w | one unknow

I

conservation of mass will alwaysbe satisfied ’

V
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GIVEN Consider the two-dimensional steady flow discussed
in Example 4.1, V = (Vo/O)(—xi + yj).

FIND Determine the streamlines for this flow.
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SoLUTION

Since
u=(—Vy/t)xand v = (V,/€)y (1)
it follows that streamlines are given by solution of the equation

ay v (Vo/f)y y
 —(Vy/x  x

v
u
in which variables can be separated and the equation integrated to

give
|55
y B X

dx
Iny = —Inx + constant

or

Thus, along the streamline
xy = C, where C is a constant (Ans)

By using different values of the constant C, we can plot various
lines in the x—y plane—the streamlines. The streamlines forx = 0
are plotted in Fig. E4.2. A comparison of this figure with Fig.
E4.1a illustrates the fact that streamlines are lines tangent to the
velocity field.
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The Stream Function,
Why do this?
*  Single variable wreplaces (u,v).
*  Once wis known, (u,v) can be determined.
*  Physical significance
1. Curves of constant y are streamlines of the flow

2. Difference in between streamlines is equal to

volume flow rate between streamlines



The Stream Function: Physical Significance

1. Curves of constant w are streamlines of the flow

Recall that the streamline equation is
given by:

dy

v
dx U

Point (x + dx, y + dy)

Streamline

) —vdr+udy =0

oY oY
o e+ 5, oy

dip = 0

dy =0

. Change in y along streamline
IS zero

y .
~  Streamlines
19
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2. Difference in w between streamlines is equal to volume flow rate between streamlines

* Let dg represent the volume rate of flow per unit width perpendicular to the
x—y plane passing between the two streamlines.

* From conservation of mass we know that the inflow, dg, crossing the arbitrary
surface AC must equal the net outflow through surfaces AB and BC. Thus,

dg =udy — vdx

e or in terms of the stream function

J dJ _

dg =Ly + :} dq = dif
oy 0X

* Thus, the volume rate of flow, g,

between two streamlines can be
determined by integration to yield

i
CI:J difp = 4, — i,

1



Prove

dg=(V eA)*area=(V e A)*dr

* Volume flow rate per unit depth=

* Now, in ter\ﬁh&@fi“vglxjcity components

dg = (ui e1)*dy+ (vje—])*dx
=udy —vdx =d¥

21



Example Stream Function

* The velocity components in a steady, incompressible, two-dimensional

flow field are U = 2y v = 4X

Determine the corresponding stream function and show on a sketch
several streamlines.

Indicate the direction of flow alo? g the streamlines.
u

From the definition of the stream function
u—§K=2y Vv —Q%:4x
oy l lax

y=y' +f,(}0)  w=-2x"+1,(y)

For simplicity, we setC=0

22



Example Solution
Y =-2X"+V’

e Streamlines can now be
determined by setting

y=const. and plotting the
resulting curve.

* With the above expression for
v, the value of y at the origin

is zero so that the equation of
the streamline passing
through the origin is

0=-2x2+y?

* For 2 2

Y+#0 —_ —

which we recognize as the equation
of a hyperbola N



Rate of rotation (angular velocity)

3
5y ¥)a
"+ &—5}‘ \
E R
g >
a8 !
E
&y & f"
ff
A A
t av { ——T T I v
" T v+ axﬁx A Yaﬂf ) [axﬁx]fj;
&, ox A O ax

Consider the rotation about z-axis of the rectangular element 0x-0y

The rotation of the side &x

av
(ﬁ 536) ot v
tan(da) = da = = — 0t
Ox ax




Rate of rotation (angular velocity)

Angular Velocity of OA

dv
o Sa_l_ a&_av
Voa = 50 sr 0T s T
The rotation of the side 8y
tan(0B) = 6 = = ot
an(9p) = 8 =5t =5
Angular Velocity of OB
du
_ _ @& du
WoB = lim — = llmSth =

5t-0 &t ot dy

0

@6}/ &_au

0y

5
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. The rotation of the element about the z axis is defined as the average of the angular velocities of the two mutually perpends lines OA and OB. If counterclockwise rotation is considered to be positive, then:

icular

g—jﬁ X] 8t



Rotational and Irrotational Flows

Fluid particles not rotating

| e @B -©
i - () m -
. . . . = _ [rrotational outer flow region
* The vorticity is defined as: | Velocity profile
» __—— Rotational boundary layer region
—_— e P
= 2- | A I W RRTCE
8W 8V a 8u 8W 2 @V 8u A Wall ijluid particles rotating
— i == |+ ———
oy 0z 0z OX OX oY s of
\ w
Flow A Ug 4 Qt)

For irrotational flow C=® =0

Examples: Rotational flow:

O g = wr utace <

Solid-Body Rotation (Forced
Vortex): ug=or




Rotational and Irrotational Flows

* Examples: Irrotational flow:
* Free Vortex: ug = K/r

vortex vortex
with without
vorticity vorticity




R(}Squo
tacmnal




Mathematical Representation

* Vorticity is the curl of the velocity vector

* For 3-D vorticity in Cartesian coordinates:

i J k
Ny o 0 O
ox oy oz
u v w

—_
=

|

OW oV

oy oz

¥

ou ow

az_8x

The horizontal relative vorticity (about z axis) is found by
eliminating terms with vertical ( ®) components:

4

ov ou

oX oy

i J k

(vxv)=[ 2 £ ) [ o
OX oy 0z oX oy
u v Ww

J



Potential Function, ¢ V =V¢

Tiotational flowiesion . !rrotat.lo.nal approximation: vorticity
is negligibly small

— —

| * In general, inviscid regions are also

\
% irrotational, but there are situations

\/ where inviscid flow are rotational,
e.g., solid body rotation.

Rotational flow region

What are the implications of irrotational approximation. Look at continuity and
momentum equations.

Use the vector identity where ¢is a scalar function V xXxVd=0
Since the flow is irrotational where —
VxV=0

V =Vo @ is a scalar potential function




Irrotational Flow Approximation

* Therefore, regions of irrotational flow are also called regions of potential
flow.

* From the definition of the gradient operator V

_0¢ o O

Cartesian U= , V=——, W=—
OX oy 0z
0 1 0¢ 0
indrica Ur=—, U, =——, UZ:_
L o' rao oz

 Substituting into the continuity equation for incompressible flow gives:

—

V- V=V-Voé=|V=0
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Irrotational Flow Approximation

* This means we only need to solve 1 linear scalar equation to determine
all 3 components of velocity!

V2¢) =0 Laplace Equation

* Luckily, the Laplace equation appears in numerous fields of science,
engineering, and mathematics. This means there are well developed
tools for solving this equation.

Momentum equation

If we can compute ¢ from the Laplace equation (which came from continuity)
and velocity from the definition  why dowe V =Vg¢e NSE? = the
answer: To compute Pressure.

To begin analysis, apply irrotational approximation to viscous term of the
incompressible NSE

pVAV = pVi(Ve) = uV(V?¢) =0

\

M 33
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Irrotational Flow Approximation

* Therefore, the NSE reduces to the Euler equation for irrotational flow

* Instead of integrating to find P, use vector identity to derive Bernoulli
equation

~~
—
- O S O S S S S S S e e e .



Irrotational Flow Approximation

 This allows the steady Euler equation to be written as

= —gk =V (g2)
V2 .o 1 - -
P V2 5 o
V(—+—+gz):VxC
P 2

* This form of Bernoulli equation is valid for inviscid and irrotational flow
since we’ve shown that NSE reduces to the Euler equation.

. " P V2
H] Inviscid ; -+ 5 + gz = C along a streamline
_ P V2
Irrotational (€ = 0) ; + B + 9z =C everywhere




Irrotational Flow Approximation

. Therefore, the process for irrotational flow
Calculate ¢ from Laplace equation (from continuity)
Calculate velocity from definition

Calculate pressure from Bernoulli equation (der — gb omentum
equation)
2 2
+—+Qz=""2+—2-+4+0QZ_
o 2 0 2
V2 . V2
P = Po+p | =5 +9(20 —2)

Valid for 3D or 2D

36



Irrotational Flow Approximation

2D Flows

* For 2D flows, we can also use the stream function y

* Recall the definition of stream function for planar (x-y) flows

oy OX
| \ ¥
* Since vorticity is zero for irrotational flow, oV ou
— — — O
O o,
w w — (0| =V2y

oy?  0x?

* This proves that the Laplace equation holds for the stream function and the

velocity potential

37



Irrotational Flow Approximation
2D Flows

* Constant values of y: streamlines

* Constant values of ¢: equipotential
lines

* wand ¢ are mutually orthogonal

* is defined by continuity;
V2 results from irrotationality

Streamlines

* ¢is defined by irrotationality;
V2@ results from continuity

Flow solution can be achieved by solving either V2@ or V2,
however, BCs are easier to formulate for w.




Relation between y and ¢ lines

* If a flow is incompressible, irrotational, and two dimensional, the velocity
field may be calculated using either a potential function or a stream
function.

* Using the potential function, the velocity components in Cartesian

coordinates are
08, 0
OX oy

9, O

* And d¢:—¢dx+—¢dy=udx+vdy
OX oy

* For lines of constant potential (d¢ = 0), which are called equipotential lines:

ﬂ u

V

dx ) _ Vv
* Since a streamline is everywhere ta?n_gcent to the local velocity, the slope of a

streamline, which is a line of constant v, is



Relation between wy and ¢ lines

ﬂ V

dx Jy_. U

* Comparing equations of slopes vields:

dy 1

dX ¢=C (dy/dx)l{lzc Equipotentiai lines :
* The slope of an equipotential line is the negative i cuipiucar ur uic Siupe Ui a
streamline.

* Therefore, streamlines (y = constant) are everywhere orthogonal
(perpendicular) to equipotential lines (¢ = constant).

* This observation is not true, however, at stagnation points, where the
components vanish simultaneously.



Irrotational Flow Approximation
2D Flows

 Similar derivation can be performed for cylindrical coordinates (except for
V2 for axisymmetric flow)
* Planar, cylindrical coordinates: flow isin (r,6) plane
* Axisymmetric, cylindrical coordinates : flow is in (r,z) plane

A

CAUTION!

LAPLACE EQUATION
NOT AVAILABLEFOR
STREAM FUNCTION IN
AXISYMMETRIC FLOW

Rotational
symmetry

Axisymmetric 0
body

"

Planar Axisymmetric

41



Irrotational Flow Approximation

2N Flnws
TABLE 10-2

Velocity components for steady, incompressible, irrotational, two-dimensional
regions of flow in terms of velocity potential function and stream function in
various coordinate systems

Description and

Coordinate System Velocity Component 1 Velocity Component 2
Planar; Cartesian ob o ocb o
coordinates u=—=— v=—= -
X dy dy 0x
Planar; cylindrical
! d 10 10 d
coordinates U, = —¢ - ——d’ Uy = __¢ _ __"b
or r 06 r a6 or
Axisymmetric; o 1 o ob 1 o

_ u =

cylindrical coordinates u, = : T 5 p
z I or

: or r oz




Potential flows Visualization

Flow fields for which an incompressible fluid is assumed to be frictionless and the motion
to be irrotational are commonly referred to as potential flows.

Paradoxically, potential flows can be simulated by a slowly moving, viscous flow between
closely spaced parallel plates.

* For such a system, dye injected
upstream reveals an approximate
potential flow pattern around a
streamlined airfoil shape.

 Similarly, the potential flow pattern
around a bluff body is shown. Even at
the rear of the bluff body the
streamlines closely follow the body
shape.

* Generally, however, the flow would
separate at the rear of the body, an
important phenomenon not
accounted for with potential theory.




Irrotational Flow Approximation
2D Flows

Method of Superposition

Since V2¢ = 0 is linear, a linear combination of two or more solutions is

also a solution, e.g., if ¢1 and ¢2 are solutions, then (A¢1), (A+¢1), (¢l+¢2),
(A¢1+B¢2) are also solutions

Also true for y in 2D flows (Vz W=O)
Velocity components are also additive

_8_¢_8(¢1+¢2)_%+%
_8.’1}_ ox _83; O

Uu

44



Irrotational Flow Approximation
2D Flows

 Given the principal of superposition, there are several
elementary planar irrotational flows which can be combined
to create more complex flows.
* Elementary Planar Irrotational Flows
Uniform stream
Line source/sink
Line vortex
Doublet



E
U

lementary Planar Irrotational Flows

niform Stream
*u=U_=constant,v=0,w=0

| I v4 | |
| | I |
Yy ——— : >
S | | | * In Cartesian coordinates
w | - | | .;I
| |
i ——— - ” ”
. | | | dp o I o
| | | | == — v = — = ——
p=0——>— i : e ax oy dy ax
| | I | |
) ——>— : —— *¢=Uox ,y=Uxoy
: | | | | * Conversion to cylindrical coordinates
Ao : > can be achieved using the
b, ¢ ¢=0 o e transformation
oy x = rcosf, y=rsind
— °f=uwrcose,w=uwrsmﬂ }

—_— irrotational

flow region



Stagnhation Flow

* The flow is an incoming far field flow which is perpendicular to the
wall, and then turns its direction near the wall

* The origin is the stagnation point of the flow. The velocity is zero
there.

A L




Application: Staghation Flow

* For a stagnation flow,

+ Hence, V =(Bxi-By j)




Elementary Planar Irrotational Flows

Line Source/Sink * Let’s consider fluid flowing
radially outward from a line
\ vt f through the origin perpendicular
\ ,,,,,, Bt / y to x-y plane
0 ! ‘\\ Py e from mass conservation:
V\I/ K 2 \\\ * The volume flow rate per unit
4 g > thickness is K
‘7 ", _* This gives velocity components
\ —
A/\‘ ,' K
\ ; V.=—— and Vv, =0
‘/\\ ,/'\ 2721'
’7“\.[“_—&//\ y K a¢ al//
"Tom o rod

and v, =0=0 __ ¥
roé or



Stream function and potential function

%:O and 8¢: R
rod or 2nar
By integration:
K
=— Inr
? 27T
a <
oy g
or

dy K N oy K
ro6 2nar 00 2rx
By integration:
K \J
Y=— 0 Equations are for a source/sink
27 at the origin

50



Elementary Planar Irrotational Flows

Line (potential) Vortex
* A potential vortex is defined as a
singularity about which fluid flows with
concentric streamlines

* Vortex at the origin. First look at

vt \ y velocity components
0
09 10y
r Ur = or raoo

\9 _lop oy T
r } vO_r@H_ or  2mr

Equations are for a line vortex
at the origin where the arbitrary
integration constants are taken to be 1B T

zero at (r,0)=(1,0) ¢ = - & ) = —or Inr
7]- ,n- 5]

o

* These can be integrated to give gand v




Free Vortex

* The potential represents a flow swirling around origin with a constant
circulationT".

* The magnitude of the flow decreases as 1/r.

w = constant

@ = constant




Line Vortex

Yy = constant

* now we consider situation when the stream
lines are concentric circles i.e. we interchange
potential and stream functions:

¢=K0
v =—-Klinr

e circulation

F=[V-ds=[[Vg-ds=[fjdg=0

e in case of vortex the circulation is zero along any ds 0\

¢ = constant

contour except ones enclosing origin \f
SNC \A r
27 ~ \a—d0
K 0
= [ =(rd6) = 27K ac A
L
I r
¢ Z w=——oInr )

:% 27T






Shape of the free surface

109 T

F = Y = constant
¢:z9 vO_r@H_an L
Bernolli’s equation

p 2
+—+ gz = const
p 2 ¢ = constan
at the free surface p=0:
V.o V.°
I + 7
29 29 |_P=Pan__
2
I
L —=—




Elementary Planar Irrotational Flows

Line Vortex
* If vortex is moved to (x,y) = (a,b)
vt p
7/ ¢ = %91 — %tan_l (g:z)
I X Iﬂ:—%lnfrl:—%ln\/(g;_a)er(y_b)z

- S —
>




Source and Sink

» Consider a source of strength K at (-a, 0) and a sink of K at (a, 0)

* For a point P with polar coordinate of (r, 0 ). If the polar coordinate from (-a,0) to

Pis (r,, 0,) and from (a, 0) to P is (r,, 0,),

* Then the stream function and potential function obtained by superposition are

given by:

K
W27z

¢ = £(Inr2 —Inr,)

27T

_(‘92 _91) ’

57




Source and Sink

* Hence,

* Since

 We have

* We have

Y =

K
7 (61—65)

tan(ZK"”) = tan(0, - 6,) =

tand, —tang,

1+tand,tand,
rsiné rsin@
tand, = and tand, =
rcoséd +a rcos@d —a
27T —2arsin6’
tan| S22 | = 50
K r-—a P
K 2arsiné g “//
:_tan-l _ 6 4\ 1,61
Yo ( r’—a’ j %:i%:i/\ v




Source and Sink

K K
¢ = (nr —Inry)=—(n :—j)

* We have

r? =(rsin@)’ +(rcos@+a)’ =r* +a’ +2arcos @

) =
r? = (rsin@) +(rcos6—a) =r* +a’—2arcosd

* Therefore,

K [+/r?+a?+2arcosd

g=-In

\/r +a’ —2arcosd

* The velocity component are:

v - K rcosé +a rcosd —a
" 2z\r +a*+2arcos@ r°+a°-—2arcosd
K rsing rsing
Vo = 9 2 2 - 2 2 :
T +a“+2arsingd r-+a°—2arsiné@






Doublet

* The doublet occurs when a source and a sink of the same strength are
collocated the same location, say at the origin.

* This can be obtained by placing a source at (-a,0) and a sink of equal
strength at (a,0) and then letting a = 0, and K-> oo, with Ka kept
constant, say akK/2 =B

* For source of K at (-a,0) and sink of K at (a,0)

wzitan_l[—zzarsn’z\@j nd ¢__| Jr2 +a%+2arcosé
27 r-—a 27 | \Jr? + a2 —2arcos@

Under these limiting conditions of a 2 0, K 2 o , we have

i tan'l(_ 2arsin«9j _ —2asing

a—0 2 r

r’—a’

. Jr2+a%+2arcosd | 2a
limIn = —C0S@

>0 | \[r? a2 —2arcosd r




‘A Doublet (Summary)
g V3 * Adding 7z and y, together,
@ performing some algebra,
L b N\ Therefore, as a>0 and K= o
/// e N Q\ X; - = 4 \\\ Wlth GK/27Z"=B then:
!/ f/ / - \:E :f;, - \ \\ 9\\
!! r’ :K = // \1 \1. \ > / ] 0 \
L -y NN I sin
_¢3\ —()52 -/ : ;;/},/ \Q\Q:\ : \ /4)2 d); r
~_ [T~ AN B I cost
r
~f, . J
—ifr3

The velocity components for a doublet may be found the same way we found

them for the source

B l610) B Bcos6
or r2

Uy

B is the doublet strength

Vg

B 100 B Bsin6

T rog 12



Description of Velocity
Flow Field Velocity Potential Stream Function Components®
Uniform flow at ¢ = Ulxcosa + ysina) Yy = U(ycos e — xsin a) u = Ucos a
angle a with the x v = Usina
axis (see Fig.
6.16b)
Source or sink m m m
(see Fig. 6.17) ¢ = _lnr =50 ey
m = () source -
m << 0 sink o
Free vortex I I
(see Fig. 6.18) b=-_0 b=—_"lr v, =0
I'>0 T
counterclockwise Vg =5
' 2mr
motion
<o
clockwise motion
Doub]zat Kcos@ Ksin#f K cos 6
(see Fig. 6.23) = = — v, = ———
r r r
Ksinf
Vg = —




Examples of Irrotational Flows Formed by Superposition
Superposition of sink and vortex : bathtub vortex

* Superposition of sink and vortex :
bathtub vortex

‘P—KH I‘1
21 Znnr

" N - %
Sink Vortex

=V

10y K
radb 2mr

Uy

Jr 27r
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Superposition of Source and Uniform Flow

e Assuming the uniform flow U is in x-direction and the source of K stregth at(0,0),
the potential and stream functions of the superposed potential flow become:

U y v =nbU

— Stagnation point

— Stagnation /'

—_ point r
E % 5 — ‘\e

—_— —

—> Source

— Al b L

—_
(a) (b)

=U '0+K9 o=U 9+K1
Y = Uy,rsin . & = U,Tcos . nr
10y K o
=——=U, 0 +— = —— = — ]
iy cos - & Vg Fm Uxsing
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Superposition of Source and Uniform Flow

e Assuming the uniform flow U is in x-direction and the source of K stregth at(0,0),
the potential and stream functions of the superposed potential flow become:

U y v =nbU
— . .
Stagnation point
’ Stagnation /°
, point r
2}
—_— -
— J Source
—_— b L
—_—
(a) (b)
m
’L? _———
T 2ar
so that the stagnation point will occur at x = —b where
m
U=
2mhb
or
m 66

b =
2aU



Source in Uniform Stream

* The velocity components are:

0¢ 0¢

V, =—:Uoocose+L andv, =——=U_sInd
or 27t roo

* A stagnation point (v,=vy=0) occurs at

O=randl=—= rSUOO:£
27U 2

o0

Therefore, the streamline passing through the stagnation point when

. K K
¢=Uoor51n9+%9 |:> W, :E:ﬂ-rsuoo
=y, =
* The maximum height of the curveds

h:rSiné?:L as@ > 0andr > w
2U

o0



Source in Uniform Stream

Stag. point /‘

Uy, \
——
(uniform stream) \
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Superposition of basic flows

» Streamlines created by injecting
dye in steadily flowing water
show a uniform flow.

* Source flow is created by
injecting water through a small
hole.

* It is observed that for this
combination the streamline
passing through the stagnation
point could be replaced by a
solid boundary which
resembles a streamlined body
in a uniform flow.

* The body is open at the
downstream end and is thus
called a halfbody.

69






Rankine Ovals

* The 2D Rankine ovals are the results of the superposition of equal strength
(K) sink and source at x=a and —a with a uniform flow in x-direction.

"I-. . .
U ' Stagnation Stagnation
—— point y=0 point

.-'2 I 11
— /
~ N o
— 6,
6, 6 \4’/ \ +K K h
- — () —— >

| —O O— >
X
— ‘--—a—--—cr——‘ \ /

_ K
Y = Uyrsing + %(92—91)

K
@ = Uy,rcosd + o (Inr, —Inry)
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Rankine Ovals

* Equivalently, \/r +a’+2arcosé
p=U_ rc:05<9+—ln

\/r +a’—2arcosd

K [ 2arsing
w =U_rsind——tan 1( ) 2)

* The velocity components are given by: 27 I —a

Vv
" or 2xlr?+a’+2arcosd r?+a?-2arcosd

op K E rsing B rsing ]

° i V, = — ; ;
Thestagnation 0 =\ 50~ 5 | r2 a2 +2arsing r’+a’-2arsing
p0|ntS occur at

where V=0 with

_ o _ K( rcosf+a  rcosf-a ]
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Rankine Ovals

* The maximum height of the Rankine oval is located at (ro ,Zj
wheny =y, =0 ,i.e,, 2
K _ Zar Stagnation B Stagnation
W = U o rO e — tan 1 > 0 — O point y=0 soint

27 0—2 e

L]

- ~ Seo== |
r, 1((r, 27zUOOarj B o S ——
—=—||—| —1|tan : ki antiall

a Z(aj ( K a : T

which can only be solved numerically.
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Flow around a Cylinder: Steady Cylinder

* Flow around a steady circular cylinder is the limiting case of a Rankine
oval when a—0.

* This becomes the superposition of a uniform parallel flow with a doublet
in x-direction.

* Under this limit and with B = a.K/27zl=constant, the radius of the

cylinder is:. >
Rt (3)

U,
yA ) A
ﬁ
5 Vuniform stream
V... v
—_— doublet SN /./
7
— K ————— 528
/ \/ \
- t > >
. \ /N 7 X >
—
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Flow around a Cylinder: Steady Cylinder

* The stream function and velocity potential become:

R2
¢=U_rcosé + Beosd = Uwr£1+ 2]0039
r r

and

. R2
w =U_rsing — Bsm@zuwr[l }sin@

r r?

* The radial and circumferential velocities are:

RZ
vr=a¢= o =U_|1-—- [cos@ and Va:%:_a_‘lj:_uw 1+
or roé r roé or

2

r2

R J _
sin@



Steady Cylinder

On the cylinder surface (r = R)

v, =0 and v, =-2U_sind

Normal velocity (v,) is zero, Tangential
velocity (v,) is non-zero =slip condition.







Pressure Distribution on a Circular Cylinder

e Using the irrotational flow approximation, we can calculate and plot the
non-dimensional static pressure distribution on the surface of a circular
cylinder of radius R in a uniform stream of speed U, .

* The pressure far away from the cylinderis p_,

* Pressure coefficient: P—P,
C,= 1

= o2

2,0 o

* Since the flow in the region of interest is irrotational, we use the Bernoulli
equation to calculate the pressure anywhere in the flow field. Ignoring the
effects of gravity

. . 2 2

Bernoulli’s equation: PV constant = P= +Uoo
p 2 P

2

C = p_ poo _1_V_

* Rearranging Cp Eq., we get P 1 U TE

7p o0



Pressure Distribution on a Circular Cylinder

* We substitute our expression for tangential
velocity on the cylinder surface, since along
the surface V2 = v?;; the Eq. becomes

o112 o 2
c,=1-CANO)" g 4gine
* In terms of angle B,defined from the front of

the body, we use the transformation 3= -0
to obtain Cp in terms of angle 3 :

1 _ .2
* We plot the p?@ss_u]re Lclsltg‘figent on the top
half of the cylinder as a function of angle 3,
solid blue curve.
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Pressure distribution on a fish

 Somewhere between the front stagnation point and the aerodynamic
shoulder is a point on the body surface where the speed just above the
body is equal to V, the pressure P is equal to P, and Cp = 0. This point is
called the zero pressure point

* At this point, the pressure acting normal to the body surface is the same
(P = Pao), regardless of how fast the body moves

* through the fluid.
 This fact is a factor in the location of fish eyes .




Pressure distribution on a fish

* If a fish’s eye were located closer to its nose, the eye would experience
an increase in water pressure as the fish swims—the faster it would
swim, the higher the water pressure on its eye would be. This would
cause the soft eyeball to distort, affecting the fish’s vision. Likewise, if
the eye were located farther back, near the aerodynamic shoulder, the
eye would experience a relative suction pressure when the fish would
swim, again distorting its eyeball and blurring its vision.

e Experiments have revealed that the fish’s eye is instead located very
close to the zero-pressure point where P = Poo, and the fish can swim at
any speed without distorting its vision.

* Incidentally, the back of the gills is located near the aerodynamic
shoulder so that the suction pressure there helps the fish to “exhale.”

* The heart is also located near this lowest pressure point to increase the
heart’s stroke volume during rapid swimming.



