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Stream Lines
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Stream Lines
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The Stream Function, (x,y)
• Consider the continuity equation for  an incompressible 2D flow

• Substituting the clever transformation, (x,y)

• Defined as:
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The Stream Function, 
• Why do this?

• Single variable  replaces (u,v).  

• Once  is known, (u,v) can be determined.

• Physical significance

1. Curves of constant  are streamlines of the flow

2. Difference in  between streamlines is equal to 

volume flow rate between streamlines
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The Stream Function: Physical Significance

Recall that the streamline equation is 
given by:

 Change in  along streamline 
is zero

1. Curves of constant  are streamlines of the flow
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• Let dq represent the volume rate of flow per unit width perpendicular to the 
x–y plane passing between the two streamlines. 

• From conservation of mass we know that the inflow, dq, crossing the arbitrary 
surface AC  must equal the net outflow through surfaces AB and BC. Thus,

• or in terms of the stream function

• Thus, the volume rate of flow, q, 

between two streamlines can be 

determined by integration to yield

2. Difference in  between streamlines is equal to volume flow rate between streamlines



Prove

• Volume flow rate per unit depth=

• Now, in terms of velocity components

 *)ˆ(*)ˆ( drnVareanVdq ••


jviuV ˆˆ 


 

*)ˆˆ(*)ˆˆ(



••

dvdxudy

dxjjvdyiiudq

21



Example Stream Function
• The velocity components in a steady, incompressible, two-dimensional 

flow field are

Determine the corresponding stream function and show on a sketch 
several streamlines. 

Indicate the direction of flow along the streamlines.
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From the definition of the stream function

x
x

vy
y

u 42 












Cyx  222
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Example Solution

• Streamlines can now be 
determined by setting 
=const. and plotting the 
resulting curve. 

• With the above expression for 
, the value of  at the origin 
is zero so that the equation of 
the streamline passing 
through the origin is

0 = -2x2 + y2

• For                           
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which we recognize as the equation 
of a hyperbola
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Rate of rotation (angular velocity)

tan 𝛿𝛼 ≈ 𝛿𝛼 =

𝜕𝑣
𝜕𝑥

𝛿𝑥 𝛿𝑡

𝛿𝑥
=
𝜕𝑣

𝜕𝑥
𝛿𝑡

Consider the rotation about z-axis of the rectangular element x-y

The rotation of the side x
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Rate of rotation (angular velocity)

Angular Velocity of OA

𝜔𝑂𝐴 = lim
𝛿𝑡→0

𝛿𝛼

𝛿𝑡
= 𝑙𝑖𝑚𝛿𝑡→0
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The rotation of the side y
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Angular Velocity of OB

tan 𝛿𝛽 ≈ 𝛿𝛽 =
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𝛿𝑦 𝛿𝑡

𝛿𝑦
=
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𝛿𝑡
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Rate of rotation (angular velocity)
• The rotation of the element about the z axis is defined as the average of the angular velocities of the two mutually perpendicular lines OA and OB. If counterclockwise rotation is considered to be positive, then:

• Average rotation about z-axis

• Average rotation about x-axis,  

• Average rotation about y-axis,  

• Rotation Vector
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Rotational and Irrotational Flows

• The vorticity is defined as:

 = 2𝜔=
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For irrotational flow =  = 0

Examples: Rotational flow:

Solid-Body Rotation (Forced 
Vortex):     u =  r
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Rotational and Irrotational Flows
• Examples: Irrotational flow:

• Free Vortex: u = K/r
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Mathematical Representation

• Vorticity is the curl of the velocity vector

• For 3-D vorticity in Cartesian coordinates:
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Potential Function, 
• Irrotational approximation: vorticity 

is negligibly small

• In general, inviscid regions are also 
irrotational, but there are situations 
where inviscid flow are rotational, 
e.g., solid body rotation.

What are the implications of irrotational approximation.  Look at continuity and 
momentum equations.
Use the vector identity where is a scalar function
Since the flow is irrotational where

is a scalar potential function



Irrotational Flow Approximation

• Therefore, regions of irrotational flow are also called regions of potential 
flow.

• From the definition of the gradient operator 

• Substituting into the continuity equation for incompressible flow gives:
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Irrotational Flow Approximation
• This means we only need to solve 1 linear scalar equation to determine 

all 3 components of velocity!

• Luckily, the Laplace equation appears in numerous fields of science, 
engineering, and mathematics.  This means there are well developed 
tools for solving this equation.

Laplace Equation

Momentum equation
If we can compute  from the Laplace equation (which came from continuity) 
and velocity from the definition , why do we need the NSE?   the 
answer: To compute Pressure.
To begin analysis, apply irrotational approximation to viscous term of the 
incompressible NSE

= 0 33



Irrotational Flow Approximation
• Therefore, the NSE reduces to the Euler equation for irrotational flow

• Instead of integrating to find P, use vector identity to derive Bernoulli 
equation
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Irrotational Flow Approximation
• This allows the steady Euler equation to be written as

• This form of Bernoulli equation is valid for inviscid and irrotational flow 
since we’ve shown that NSE reduces to the Euler equation. 

• However, 
Inviscid

Irrotational ( = 0)
35



Irrotational Flow Approximation
• Therefore, the process for irrotational flow

1. Calculate  from Laplace equation (from continuity)

2. Calculate velocity from definition

3. Calculate pressure from Bernoulli equation (derived from momentum 
equation)

Valid for 3D or 2D


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Irrotational Flow Approximation
2D Flows

• For 2D flows, we can also use the stream function 

• Recall the definition of stream function for planar (x-y) flows

• Since vorticity is zero for irrotational flow,

• This proves that the Laplace equation holds for the stream function and the 
velocity potential 
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Irrotational Flow Approximation
2D Flows

• Constant values of :  streamlines

• Constant values of : equipotential 
lines

•  and  are mutually orthogonal

•  is defined by continuity; 
2 results from irrotationality

•  is defined by irrotationality;
2 results from continuity

Flow solution can be achieved by solving either 2 or 2, 
however, BCs are easier to formulate for 



Relation between   and  lines
• If a flow is incompressible, irrotational, and two dimensional, the velocity 

field may be calculated using either a potential function or a stream 
function. 

• Using the potential function, the velocity components in Cartesian 
coordinates are

• And

• For lines of constant potential (d = 0), which are called equipotential lines:

• Since a streamline is everywhere tangent to the local velocity, the slope of a 
streamline, which is a line of constant , is
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Relation between   and  lines

• Comparing equations of slopes yields:

• The slope of an equipotential line is the negative reciprocal of the slope of a 
streamline.

• Therefore, streamlines ( = constant) are everywhere orthogonal 
(perpendicular) to equipotential lines ( = constant). 

• This observation is not true, however, at stagnation points, where the 
components vanish simultaneously.
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Irrotational Flow Approximation
2D Flows
• Similar derivation can be performed for cylindrical coordinates (except for 
2 for axisymmetric flow)
• Planar, cylindrical coordinates:  flow is in (r,) plane

• Axisymmetric, cylindrical coordinates : flow is in (r,z) plane

Planar Axisymmetric
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Irrotational Flow Approximation
2D Flows

42



Potential flows Visualization

• For such a system, dye injected 
upstream reveals an approximate 
potential flow pattern around a 
streamlined airfoil shape. 

• Similarly, the potential flow pattern 
around a bluff body is shown. Even at 
the rear of the bluff body the 
streamlines closely follow the body 
shape. 

• Generally, however, the flow would 
separate at the rear of the body, an 
important phenomenon not 
accounted for with potential theory. 

 Flow fields for which an incompressible fluid is assumed to be frictionless and the motion 
to be irrotational are commonly referred to as potential flows.

 Paradoxically, potential flows can be simulated by a slowly moving, viscous flow between 
closely spaced parallel plates.
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Irrotational Flow Approximation
2D Flows

• Method of Superposition

1. Since 2   is linear, a linear combination of two or more solutions is 

also a solution, e.g., if 1 and 2 are solutions, then (A1), (A+1), (1+2), 

(A1+B2) are also solutions

2. Also true for  in 2D flows (2 =0)

3. Velocity components are also additive
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Irrotational Flow Approximation
2D Flows

• Given the principal of superposition, there are several 
elementary planar irrotational flows which can be combined 
to create more complex flows.  

• Elementary Planar Irrotational Flows
• Uniform stream

• Line source/sink
• Line vortex
• Doublet

45



Elementary Planar Irrotational Flows
Uniform Stream

• u = U=constant , v = 0, w = 0

• In Cartesian coordinates

•  = U x    ,  = U y 

• Conversion to cylindrical coordinates 
can be achieved using the 
transformation

•  = U r cos  ,  = U r sin 

U



• The flow is an incoming far field flow which is perpendicular to the 
wall, and then turns its direction near the wall

• The origin is the stagnation point of the flow. The velocity is zero 
there.

Stagnation Flow

x



y
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Application: Stagnation Flow

• For a stagnation flow,                      

• Hence, 

• Therefore,

• And

• Therefore
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Elementary Planar Irrotational Flows
Line Source/Sink • Let’s consider fluid flowing 

radially outward from a line 
through the origin perpendicular 
to x-y plane 

• from mass conservation:

• The volume flow rate per unit 
thickness is K

• This gives velocity components
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Elementary Planar Irrotational Flows
Line (potential) Vortex

• A potential vortex is defined as a 
singularity about which fluid flows with 
concentric streamlines

• Vortex at the origin.  First look at 
velocity components

• These can be integrated to give  and 
Equations are for a line vortex
at the origin where  the arbitrary 
integration constants are taken to be 
zero at (r,)=(1,0)
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• The potential represents a flow swirling around origin with a constant 
circulation . 

• The magnitude of the flow decreases as 1/r. 

Free Vortex
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Line Vortex

• now we consider situation when the stream 
lines are concentric circles i.e. we interchange 
potential and stream functions:
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Shape of the free surface
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Elementary Planar Irrotational Flows
Line Vortex

• If vortex is moved to (x,y) = (a,b)



Source and Sink
• Consider a source of strength K at (-a, 0) and a sink of K at (a, 0) 

• For a point P with polar coordinate of (r,  ). If the polar coordinate from (-a,0) to 
P is (r2, 2) and from (a, 0) to P is (r1, 1),

• Then the stream function and potential function obtained by superposition are 
given by:
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Source and Sink

• Hence,

• Since

• We have 

• We have 
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Source and Sink

• We have

• Therefore,

• The velocity component are:
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Doublet
• The doublet occurs when a source and a sink of the same strength are 

collocated the same location, say at the origin.

• This can be obtained by placing a source at (-a,0) and a sink of equal 
strength at (a,0) and then letting a  0, and K , with Ka kept 
constant, say aK/2=B

• For source of K at (-a,0) and sink of K at (a,0)
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Doublet (Summary)

• Adding 1 and 2 together, 
performing some algebra, 
Therefore, as a0 and K 
with aK/2=B then:

B is the doublet strength

ψ = −𝐵
𝑠𝑖𝑛𝜃

𝑟

𝜙 = 𝐵
𝑐𝑜𝑠𝜃

𝑟

The velocity components for a doublet may be found the same way we found 
them for the source

𝑣𝑟 =
𝜕∅

𝜕𝑟
= −

𝐵𝑐𝑜𝑠𝜃

𝑟2
𝑣𝜃 =

1

𝑟

𝜕∅

𝜕𝜃
=
𝐵𝑠𝑖𝑛𝜃

𝑟2&





Examples of Irrotational Flows Formed by Superposition

Superposition of sink and vortex : bathtub vortex

• Superposition of sink and vortex : 
bathtub vortex

Sink Vortex

Ψ =
𝐾

2𝜋
𝜃 −

Γ

2𝜋
ln 𝑟

𝑣𝜃 = −
𝜕𝜓

𝜕𝑟
=



2𝜋𝑟

𝑣𝑟 =
1

𝑟

𝜕𝜓

𝜕𝜃
=

𝐾

2𝜋𝑟
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Superposition of Source and Uniform Flow
• Assuming the uniform flow U is in x-direction and the source of K stregth at(0,0), 

the potential and stream functions of the superposed potential flow become:

𝜓 = 𝑈∞𝑟𝑠𝑖𝑛𝜃 +
𝐾

2𝜋
𝜃 ∅ = 𝑈∞𝑟𝑐𝑜𝑠𝜃 +

𝐾

2𝜋
ln 𝑟&

𝑣𝑟 =
1

𝑟

𝜕𝜓

𝜕𝜃
= 𝑈∞𝑐𝑜𝑠𝜃 +

𝐾

2𝜋𝑟
𝑣𝜃 = −

𝜕𝜓

𝜕𝑟
= −𝑈∞𝑠𝑖𝑛𝜃&
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Superposition of Source and Uniform Flow
• Assuming the uniform flow U is in x-direction and the source of K stregth at(0,0), 

the potential and stream functions of the superposed potential flow become:
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Source in Uniform Stream

• The velocity components are:

• A stagnation point (vr=v=0) occurs at            

Therefore, the streamline passing through the stagnation point when 

• The maximum height of the                       curve is  
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Source in Uniform Stream

2

m
ψ 

2

m
ψ 

0ψ
Stag. point
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Superposition of basic flows

• Streamlines created by injecting 
dye in steadily flowing water 
show a uniform flow. 

• Source flow is created by 
injecting water through a small 
hole. 

• It is observed that for this 
combination the streamline 
passing through the stagnation 
point could be replaced by a 
solid boundary which 
resembles a streamlined body 
in a uniform flow. 

• The body is open at the 
downstream end and is thus 
called a halfbody. 
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Rankine Ovals
• The 2D Rankine ovals are the results of the superposition of equal strength 

(K) sink and source at x=a and –a with a uniform flow in x-direction.

𝜓 = 𝑈∞𝑟𝑠𝑖𝑛𝜃 +
𝐾

2𝜋
(𝜃2−𝜃1)

∅ = 𝑈∞𝑟𝑐𝑜𝑠𝜃 +
𝐾

2𝜋
(𝑙𝑛𝑟2−ln 𝑟1)
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Rankine Ovals
• Equivalently,

• The velocity components are given by:

• The stagnation 

points occur at

where   V = 0  with 

corresponding s = 0
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Rankine Ovals
• The maximum height of the Rankine oval is located at 

when  = s = 0 ,i.e.,

which can only be solved numerically.
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Flow around a Cylinder: Steady Cylinder
• Flow around a steady circular cylinder is the limiting case of a Rankine

oval when a0. 

• This becomes the superposition of a uniform parallel flow with a doublet 
in x-direction.

• Under this limit and with B = a.K /2 =constant,   the radius of the 
cylinder is:.
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• The stream function and velocity potential become:

• The radial and circumferential velocities are:
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Flow around a Cylinder: Steady Cylinder
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Steady Cylinder

On the cylinder surface (r = R)

Normal velocity (vr) is zero, Tangential 
velocity (v) is non-zero slip condition.

 sin2      0  Uvvr and
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Pressure Distribution on a Circular Cylinder
• Using the irrotational flow approximation, we can calculate and plot the 

non-dimensional static pressure distribution on the surface of a circular 
cylinder of radius R in a uniform stream of speed U . 

• The pressure far away from the cylinder is p

• Pressure coefficient: 

• Since the flow in the region of interest is irrotational, we use the Bernoulli 
equation to calculate the pressure anywhere in the flow field. Ignoring the 
effects of gravity

• Bernoulli’s equation:

• Rearranging Cp Eq. , we get
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Pressure Distribution on a Circular Cylinder

• We substitute our expression for tangential 
velocity on the cylinder surface, since along 
the surface V2 = v2

; the Eq. becomes

• In terms of angle , defined from the front of 
the body, we use the transformation  =  - 
to obtain Cp in terms of angle  :

• We plot the pressure coefficient on the top 
half of the cylinder as a function of angle  , 
solid blue curve.
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Pressure distribution on a fish
• Somewhere between the front stagnation point and the aerodynamic 

shoulder is a point on the body surface where the speed just above the 
body is equal to V, the pressure P is equal to P , and Cp = 0. This point is 
called the zero pressure point

• At this point, the pressure acting normal to the body surface is the same 
(P = P), regardless of how fast the body moves

• through the fluid. 

• This fact is a factor in the location of fish eyes .
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• If a fish’s eye were located closer to its nose, the eye would experience 
an increase in water pressure as the fish swims—the faster it would 
swim, the higher the water pressure on its eye would be. This would 
cause the soft eyeball to distort, affecting the fish’s vision. Likewise, if 
the eye were located farther back, near the aerodynamic shoulder, the 
eye would experience a relative suction pressure when the fish would 
swim, again distorting its eyeball and blurring its vision. 

• Experiments have revealed that the fish’s eye is instead located very 
close to the zero-pressure point where P = P , and the fish can swim at 
any speed without distorting its vision.

• Incidentally, the back of the gills is located near the aerodynamic 
shoulder so that the suction pressure there helps the fish to “exhale.” 

• The heart is also located near this lowest pressure point to increase the 
heart’s stroke volume during rapid swimming.

Pressure distribution on a fish
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