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Character of the steady, viscous flow past a flat plate
parallel to the upstream velocity
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B Figure 9.6 Character of the steady, viscous flow past a circular cylinder:
(a) low Reynolds number flow, (b) moderate Revnolds number flow,
(¢) large Reynolds number flow.



Boundary Layer

The purpose of the boundary layer is to allow the fluid to change its velocity from the
upstream value of U to zero on the surface. Thus, V=0aty =0and V = Ui at the
edge of the boundary layer, with the velocity profile, u = u(x, y) bridging the boundary
layer thickness. This boundary layer characteristic occurs in a variety of flow situations,
not just on flat plates. For example, boundary layers form on the surfaces of cars, in the
water running down the gutter of the street, and in the atmosphere as the wind blows
across the surface of the Earth (land or water).



Boundary Layer
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B Figure 9.8 Boundary layer thickness: (@) standard boundary layer

thickness, (b) boundary layer displacement thickness.
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Boundary Layer
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M Figure 9.8 Boundary layer thickness: (a) standard boundary layer
thickness, (b) boundary layer displacement thickness.
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The distance through which the external inviscid flow is displaced by the
presence of the boundary layer.




Boundary Layer

Figure 17.6 The “effective body,” equal to the actual body
shape plus the displacement thickness distribution,



Boundary Layer

Another boundary-layer property of importance is the momentum thickness 6,
defined as
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Figure 17.4 Construction for the discussion of
displacement thickness.



Boundary Layer

To understand the physical interpretation of £, return again to Figure 17.4. Con-
sider the mass flow across a segment dv. given by dm = pu dy. Then

A = momentum flow across dy = dmu = pu*dy

[t this same elemental mass flow were associated with the freestream. where the
velocity is u,. then

~ | momentum flow at freestream
~ | velocity associated with mass dm = dmu, = (pu dv)u,
Hence,

decrement in momentum flow
B — A = ¢ (missing momentum flow) associated = pu(u, — u)dy (17.11)
with mass dm

The total decrement in momentum flow across the vertical line from v = 0 to
v = vy in Figure 17.4 is the integral of Equation (17.11),

Total decrement in momentum }

¥
o = u(u, —u)dv (17.12
flow. or missing momentum flow /D P ¢ )d )



Boundary Layer

Assume that the missing momentum flow is the product of p,u? and a height 6.
Then,

Missing momentum flow = ,o,_,,ugﬂ (17.13)

Equating Equations (17.12) and (17.13), we obtain

¥
p,_au;"fﬁ = / pu(, —u)dy
Jo

I pu i
9 — / | — = )dy (17.14)
J0 ‘D(JH Z Ii.f{.l

Therefore, 8 is an index that is proportional to the decrement
in momentum flow due to the presence of the boundary layer. It is the height of a

hypothetical streamtube which is carrying the missing momentum flow at freestream
conditions.
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Reynolds Number

pVL Inertia Ef fect
Re =

U N Viscosity Ef fect

Where p density, u viscosity and V velocity.

Area L is the characteristic length:
for a flat plate: Plate Length
For a circle or a sphere is Diameter
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Reynolds Number for a flow over a Flate
Plate

Vx
Re=p—
U

Where p density, u viscosity and V velocity.

Area x is the distance from the leading edge:
for a flat plate: Plate Length
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B Figure 9.7 Distortion of a fluid particle as it flows within the boundary layer.
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_ pVL _ Inertia Force

u  Viscous Force

100

10

Re

10
U, m/s (air)

100



GIVEN Air flowing into a 2-ft-square duct with a uniform ve- U= S e S T

locity of 10 ft/s forms a boundary layer on the walls as shown in 10 Wf’ _ /
Fig. E9.3a. The fluid within the core region (outside the boundary - B T ———————————
layers) flows as if it were inviscid. From advanced calculations it Inviscid core l
is determined that for this flow the boundary layer displacement . 2-ft square 5* . Utx)
thickness is given by > ’Lr___________i___ >)
&% = 0.0070(x)"? (1) (1) ! (2)
where 6* and x are in feet. : x

FIND Determine the velocity U = U(x) of the air within the
duct but outside of the boundary layer.
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U, =

If we assume incompressible flow (a reasonable assumption be- 19 fys / sl iz T i

cause of the low velocities involved), it follows that the volume _ “Tmh_: ________
flowrate across any section of the duct is equal to that at the en- Inviscid core L
trance (i.e., @, = Q,). That is, . 2-ft square ve)

: F_J;,___F___f_*__ )

UA, = 10ft/s (2 ft)? = 40 /s = | udA () (2)
Yy x

According to the definition of the displacement thickness, 6%*, the
flowrate across section (2) is the same as that for a uniform flow 12
with velocity U through a duct whose walls have been moved 10—
inward by 6*. That is,

U ft/s

401/s = | udA = U2 ft — 26%) (2)
‘o)

[ L L L I ¢ ¢

By combining Eqgs. 1 and 2 we obtain

0 20 40 60 80 100
40 ft*/s = 4U(1 — 0.0070x"/?)* x, ft
()
or W Figure E9.3
10

U= — ft/s (Ans)
(1 — 0.0070x2)? / N




COMMENTS Note that U increases in the downstream di-
rection. For example, as shown in Fig. E9.3b, U = 11.6 ft/s at
x = 100 ft. The viscous effects that cause the fluid to stick to the
walls of the duct reduce the effective size of the duct, thereby
(from conservation of mass principles) causing the fluid to ac-
celerate. The pressure drop necessary to do this can be obtained
by using the Bernoulli equation (Eq. 3.7) along the inviscid
streamlines from section (1) to (2). (Recall that this equation is
not valid for viscous flows within the boundary layer. It is,

however, valid for the inviscid flow outside the boundary layer.)
Thus,

pi +1pUt = p + 1pU°

Hence, with p = 2.38 X 10 % slugs/ft’ and p, = 0 we obtain
1 g g
p=5pUi—-U)

1
= 5(2.38 X 1077 slugs/ft%)

10
(1 — 0.0079x'?)

X [(10 ft/s)* — " ftz,fsg]

or

1
(1 — 0.0070x'?y*

p:0.119{1 — ]lbfft2
For example, p = —0.0401 1b/ft* at x = 100 ft.

If it were desired to maintain a constant velocity along the
centerline of this entrance region of the duct, the walls could be
displaced outward by an amount equal to the boundary layer dis-
placement thickness, &*.
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Boundary Layer over a flat plate




Boundary Layer transition from laminar to
turbulent

The transition from a laminar boundary layer to a turbulent boundary layer occurs at a
critical value of the Reynolds number, Re, . on the order of 2 X 10° to 3 X 10% depending
on the roughness of the surface and the amount of turbulence in the upstream flow
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Boundary Layer on a Flat Plate
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Boundary Layer on a Flat Plate

Laminar Turbulent

M Figure 9.9 Typical characteristics of boundary layer
| thickness and wall shear stress for laminar and turbulent
x  boundary layers.
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Boundary Layer transition from laminar to
turbulent




Transition
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Laminar Boundary Layer



Prandtl/Blasius Boundary Layer Solution

for steady, two-dimensional laminar flows with negligible gravitational effects,
incompressible flow:

Continuity Equation

ou v
i + - 0
ax dy
By solving Navier—Stokes equations
o ou [ dp Pu 0tu
U— +v-—=———"+ vV L
oX dy p 0x 0X dy”

AV AV | ap ?v 0w
u t Vv = ——7——"+Tv +

dx Ay p Ay x> ay
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Prandtl/Blasius Boundary Layer Solution

Since the boundary layer is thin, it is expected that the component of velocity normal to
the plate is much smaller than that parallel to the plate and that the rate of change of any
parameter across the boundary layer should be much greater than that along the flow

direction. That 1s,

d 0
v<<u and — <-
dx dy
With these assumptions it can be shown that the governing equations reduce to the
following boundary layer equations:

ou Jv
a— + d_ = ()
X y ap
Ju ou d%u v =0
u— + v =V y .,

0x a}? 8}32



Prandtl/Blasius Boundary Layer Solution

With these assumptions it can be shown that the governing equations reduce to the
following boundary layer equations:

ou Jv
I =0
ox 0y
AUl Al 921
U - U = )V—
0.X dy ay?
ap
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Prandtl/Blasius Boundary Layer Solution

Boundary conditions

u=v=0 on y=0

u—U as y—x

No Exact Solution is available for those equations

u—U
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Prandtl/Blasius Boundary Layer Solution

For Compressible B. L.

o d(pu d(pv
Continuity: pU) (p ) =0
' dx ay
au Ju dp. J au
X momentum: PU— + pUV— = — + — | H—
X dy dx ay ay

ap
Y momentum: — =0
(3‘_‘-.'
. - 7
ah dh J aT dp. du\~
Energv: pu— +pv—=— | k— | +u +p | —
0.x ay dy dy dx ay

(17.28)

(17.29)

(17.30)

(17.31)
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Prandtl/Blasius Boundary Layer Solution

It can be argued that in dimensionless form the boundary layer velocity profiles on a flat
plate should be similar regardless of the location along the plate. That is,

y

v increasing
(x = constant)
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Prandtl/Blasius Boundary Layer Solution

The final solution is

5 5
x  VRe,
5 1721 6 0.664
X VRe, X VRe,
—
ro=03320%2, |PE
\ x
.= Ty 0.664
f Cr =
U’ " VRe, .



Prandtl/Blasius Boundary Layer Solution

Laminar Flow along a Flat Plate
(the Blasius Solution)

5 N
4 ~0.99atn =5/} n=yWU/wvo)'*  f'() =u/U Ui f'(m)
: / . 0 0 36 09233
DA J | 0.4 0.1328 40 09555
= / 0.8 0.2647 44 0.9759
= 2 — 1.2 0.3938 48  0.9878
1.6 0.5168 50 0.9916
1 2.0 0.6298 52 0.9943
; 2.4 0.7290 56 0.9975
0 02 04 06 08 10 2.8 0.8115 60  0.9990
o= 32 0.8761 ~  1.0000
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Prandtl/Blasius Boundary Layer Solution

85 = 35,
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4 -0.993atn =5
4 : > 8, =28,
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= 2
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frim=1 !
(b)
()
B Figure 9.10 Blasius boundary layer profile: (a) boundary layer profile in dimension-
less form using the similarity variable n, (b) similar boundary layer profiles at different

34
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Prandtl/Blasius Boundary Layer Solution

u=u(n)is the
same for all
x stations

x stations
Y o o A o o A A A, /A’/////W/Wm’/.: X

Velocity profiles u = u{y)
are different at different

Figure 18.3 Velocity profiles in physical and transformed space,
demonstrating the meaning of self-similar solutions.
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Momentum Integral Boundary Layer Equation

for a Flat Plate

¥ ] | — Control
, surface
Streamline - A
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e * % n x Sr_ _ -
| AN X
[].] N I'H_.f.T] [2}

B Figure 9.11 Control volume used in the derivation of the momentum
integral equation for boundary layer flow.

SF=-0= —J 7, dA = —b ] T, dx

W
“plate “plate

-9 = pJ' U—-U)dA + p J' u* dA
(1) 2
5

9 = pU ’hh — pb J u? dy
0
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Momentum Integral Boundary Layer Equation

for a Flat Plate

U | ——— Control
il surface
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— |l e - alx)
ff_i,--- - ~~ Boundary layer edge i
: Kf--L = = -_-‘ - e —
I *, | x
(1) N (x) (2)

M Figure 9.11 Control volume used in the derivation of the momentum
integral equation for boundary layer flow.

5
Y = pbj u(U — u) dy

0
% = pbU?* ©

T, = pU? .
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Momentum Integral Boundary Layer Equation

for a Flat Plate

1.0
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Blasius ~

Sine wave
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B Figure 9.12 Typical approximate
boundary layer profiles used in the
momentum integral equation.
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Turbulent Boundary Layer



Turbulent Boundary Layer

Experimental measurements have shown that the time-averaged velocity for a turbulent
boundary layer on a flat plate may be represented by the 1/7th power law:

u y\ 7
=)

40



Turbulent Boundary Layer
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Turbulent Boundary Layer
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B Figure 9.15 Friction drag coefficient for a flat plate parallel
to the upstream flow (Ref, 18, with permission).



Flat Plate Drag
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Flat Plate Drag

3

e L) o

Laminar |Transition! Turbulent')
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CD, friction = Cf

e Local friction coefficient

. 664

e Laminar: Cre = ;flﬁ/z

e Turbulent: 0.059
Cf,m — Rei/5

* Average friction coefricient

Cs =1 Jy Crode

For some cases, plate is long enough for turbulent
flow, but not long enough to neglect laminar portion

_ 1
Cf—f 0

(

mC‘T‘

Of,m,lam dz + fﬂ?l;r Of,m,tu'r'b dﬂ’})
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Flat Plate Drag

Empirical Equations for the Flat Plate Drag Coefficient

Equation Flow Conditions

Cpr = 1.328/(Re;)™ Laminar flow

Cpr = 0.455/(log Re,)*® — 1700/Re, Transitional with Re ., = 5 X 10°
Cpr = 0.455/(log Re,)™* Turbulent, smooth plate

Cpr = [1.89 — 1.62 log(e/€)] > Completely turbulent

Transition takes place at a distance x given by:
Re, .=2X10° to 3X10°¢ - We will use Re, .= 5X10°

Drag coefficient may also be obtained from charts such
as those on the next slides
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M Figure 9.14 Typical boundary layer profiles on a flat
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AIRFOIL GEOMETRY PARAMETERS
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AIRFOIL GEOMETRY PARAMETERS

* If a horizontal wing is cut by a vertical plane, the resultant section is called
the airfoil section .

* The generated lift and stall characteristics of the wing depend strongly on
the geometry of the airfoil sections that make up the wing.

* Geometric parameters that have an important effect on the aerodynamic
characteristics of an airfoil section include
(1) the leading-edge radius,
(2) the mean camber line,
(3) the maximum thickness and the thickness distribution of
the profile, and
(4) the trailing-edge angle.

* The effect of these geometric parameters, will be discussed after an
introduction to airfoil-section nomenclature.



Parameters used to describe the airfoil

* Some of the basic parameters to describe the airfoil geometry are:

1.

7.

Leading edge—the forward most point on the airfoil (typically placed at the origin
for convenience)

Trailing edge—the aft most point on the airfoil (typically placed on the x axis for
convenience)

Chord line—a straight line between the leading and trailing edges (the x axis for our
convention)

Mean camber line—a line midway between the upper and lower surfaces at each
chord-wise position

Maximum camber—the largest value of the distance between the mean camber
line and the chord line, which quantifies the camber of an airfoil

Maximum thickness—the largest value of the distance between the upper and
lower surfaces, which quantifies the thickness of the airfoil

Leading-edge radius—the radius of a circle that fits the leading-edge curvature

* These geometric parameters are used to determine certain aerodynamic
characteristics of an airfoil.



