SPC 407
Sheet 7 - Solution
Compressible Flow - Normal Shock wave

Compressible Flow — Expansion Waves

1. Are the isentropic relations of ideal gases applicable for flows across (a) normal
shock waves, (b) oblique shock waves, and (c) Prandtl-Meyer expansion waves?
Solution:

The isentropic relations of ideal gases are not applicable for flows across (a)
normal shock waves and (b) oblique shock waves, but they are applicable for
flows across (c) Prandtl-Meyer expansion waves.

Flow across any kind of shock wave involves irreversible losses —hence, it cannot
be isentropic.

2. Air flowing at 32 kPa, 240 K, and Ma: = 3.6 is forced to undergo an expansion
turn of 15°. Determine the Mach number, pressure, and temperature of air after
the expansion.

Solution:
Air flowing at a specified supersonic Mach number undergoes an expansion
turn. The Mach number, pressure, and temperature downstream of the sudden
expansion along a wall are to be determined.
Assumptions 1. The flow is steady.

2. The boundary layer on the wedge is very thin.

3. Airis an ideal gas with constant specific heats.
Properties  The specific heat ratio of airis k = 1.4.




On the basis of Assumption #2, we take the deflection angle as equal to the
wedge half-angle, i.e.,0 = § = 15°. Then the upstream and downstream
Prandtl-Meyer functions are determined to be

v(Ma) = ]L;tan_1 \/A—(Ma —1) |- tan 1( Mazl)
k-1 k+
Upstream:
V(Ma,) = |22 Nﬁ(” 62—1)J tan ‘( 3.62—1J:60.09°

Then the downstream PrandtI-Meyer function becomes
v(Ma,) =6+v(Ma,) =15°+60.09° = 75.09°

Ma; is found from the Prandtl-Meyer relation, which is now implicit:
Downstream:

v(Ma, )= ijjﬁtan_l[\/;jjiMaq l)}—tan (1/Ma§—1)—75.09°

Solution of this implicit equation gives Ma2 = 4.81. Then the downstream
pressure and temperature are determined from the isentropic flow relations:
_PlR p [ Maj (k—1)/2] 7" -":("‘1) [+ 481214 -1/ 2] 470
" R/BR " [1+Maj(k-1)/2]ED [1+3.67(1.4-1)/ 27404
7 _D/T I _[+Maj(k—1)/2]" I - [1+4.81°14-1)/ 2]‘1
© LT, [1+Ma?(k-1)/2] [1+3.6°(1.4-1)/2]"

(32kPa) —6.65kPa

(240K) =153K

Note that this is an expansion, and Mach number increases while pressure and
temperature decrease, as expected.



3. For a given Prandtl-Meyer expansion, the upstream Mach number is 3 and
the pressure ratio across the wave is p2/p1 = 0.4. Calculate the angles of
the forward and rearward Mach lines of the expansion fan relative to the
free-stream direction.

Solution:
From Table A.5, for M; = 1.5: v; = 11.91° and u, = 41.81°. So

v; = + 68 =11.91 420 =31.91°

From Table A.5, for v, = 31.91°:

M; =2207 | and ;= 26.95°

From Table A.1, for M, = 1.5:

Po 3671 and 1oL — 145
P '}

From Table A.1, for M>; = 2.207:

, T,
Por _ 1081 and -2 =1974
P T3

The flow through an expansion wave is isentropic; hence p,, = p,, and T,,, = T,,,. Thus,

po= P2 P Poy  (10.81)7 (1)(3.671)(1700) = | 577.3 Ib/fE
Po; Poy P

TZ r;r'; Tﬂ| -1
= e eenl =({1.97 ) = O°R
Ty T.. T, T, T, = (1.975)" (1) 1.45)(460) 337.9

Por = Por = L2 py = (3.671)(1700) = | 6241 b/’
g

T,
T, =T, = —T‘_”ir] — (1.45)(460) = | 667°R
|

Returning to Fig. 4.32:

Angle of forward Mach line =, = | 41.81°

Angle of rearward Mach line = i, — 6, = 26,95 - 20 = | 6.95°




4. Consider the supersonic flow of air at upstream conditions of 70 kPa and 260 K
and a Mach number of 2.4 over a two-dimensional wedge of half-angle 108. If
the axis of the wedge is tilted 258 with respect to the upstream air flow,
determine the downstream Mach number, pressure, and temperature above the
wedge.

Solution:
Air flowing at a specified supersonic Mach number undergoes an expansion
turn over a tilted wedge. The Mach number, pressure, and temperature
downstream of the sudden expansion above the wedge are to be determined.
Assumptions 1. The flow is steady.

2. The boundary layer on the wedge is very thin.

3. Airis an ideal gas with constant specific heats.
Properties The specific heat ratio of air is k = 1.4.

On the basis of Assumption #2, the deflection angle is determined to be 6 =
6 = 25 — 10 = 15°. Then the upstream and downstream Prandtl-Meyer
functions are determined to be

v(Ma) = k—jL_ltan_1 E(Maz—l) —tan [ VMa“® 1
1 k+1
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Upstream:
v(Ma,) = La+l Nl A= 1(2.42 —I)J—tan_l( 2.4° —1):36.?50
Then the downstream PrandtI-Meyer function becomes
v(Ma,)=6+v(Ma,)=15"+36/75°=51.75°

Now Ma; is found from the Prandtl-Meyer relation, which is now implicit:
Downstream:

1.4+1 1
v(Ma,) = T rau“[\/iaxhj—lﬂ rml‘l(,/h-1a§_1]:51.75°

1.4-1 14
It gives Ma; = 3.105. Then the downstream pressure and temperature are
determined from the isentropic flow relations

Py Py [1+Maj(k-1/2] %D 1431057 (1.4 -1)/2]7404
P = 2/ P A= k(- f1 7 2  A1—1.4/04
/Py [1+Ma; (k—1)/2] [1+242(1.4-1)/2]
_L/T . _[L+Maj(e-D/2]" . [143.105°(1.4 -1/ 2"
P OL/T, Y [I+Mai(k-D/2] T [1+2.4°14-1)/2]"
Note that this is an expansion, and Mach number increases while pressure and
temperature decrease, as expected.

(70 kPa) = 23.8kPa

(260 K)=191 K

. Reconsider Prob. 4. Determine the downstream Mach number, pressure, and
temperature below the wedge for a strong oblique shock for an upstream Mach
number of 5.
Solution:
Air flowing at a specified supersonic Mach number undergoes a compression
turn (an oblique shock) over a tilted wedge. The Mach number, pressure, and
temperature downstream of the shock below the wedge are to be determined.
Assumptions 1. The flow is steady.

2. The boundary layer on the wedge is very thin.

3. Airis an ideal gas with constant specific heats.
Properties The specific heat ratio of airis k = 1.4.

|

Ma, =35

[

L
Mag
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On the basis of Assumption #2, the deflection angle is determinedto 8 = § =

25 + 10 = 35°. Then the two values of oblique shock angle 8 are determined

from

- 2(1\--Ia§ sin’ F—1)/tan S N tan 12° — 2(5‘.=’E2 sin® f—1)/tan B
Maj (k+cos2f)+2 3.4°(14+cos2f)+2

which is implicit in . From [ curve, Bweak =49.86° and Bstrong = 77.66°. Then

for the case of strong oblique shock, the upstream “normal” Mach number

Mai,n becomes
Ma,  =Ma, sin f=5s1177.66°=4.884

Also, the downstream normal Mach numbers Ma2,n become
(k=DMaf, +2 | (1.4-1)(4.884)% +2
2iMa;, —k+1 | 2(1.4)(4.884)" —1.4+1

The downstream pressure and temperature are determined to be

2iMal  —k+1 2(1.4)(4.884)> —1.4+1
p=pR—1% " _(70kPa) (1.4)(4.884) *
k+1 1.4+1

P, p P, 2+(k—1)Ma; 1940 kPia 2+ (1.4—1)(4.884)°
T, = ]‘1_7;_1:]‘1_2 ) - ln =(260K) ia 2+( X ;)
A p P (k+D)Maj 70kPa  (1.4+1)(4.884)°

Ma, =0.4169

21 =

=1940kPa

=1450K

The downstream Mach number is determined to be

Ma
Ma, = 2 0.4169 _0.615
sin(f —0) 5111(?? 66°—35°)

Note that May,, is supersonic and Maz,» and Ma; are subsonic. Also note the
huge rise in temperature and pressure across the strong oblique shock, and the
challenges they present for spacecraft during reentering the earth’s
atmosphere.




6. A uniform supersonic stream with M; = 1.5, p1 = 17001b/ft2, and T1 = 460° R
encounters an expansion comer (see Fig. ) which deflects the stream by an angle
0, = 20°. Calculate My, p2, T2, po2, To2, and the angles the forward and rearward
Mach lines make with respect to the upstream flow direction.

Solution:

7. Consider a supersonic flow with an upstream Mach number of 4 and pressure
of 1 atm. This flow is first expanded around an expansion comer with 8 = 15°,
and then compressed through a compression comer with equal angle 8 = 15° so
that it is returned to its original upstream direction. Calculate the Mach number
and pressure downstream of the compression corner.

Solution:
From Table A.5, for M1 =4, v1 =65.78

v2=v1+0=6578+15=280.78°

From Table A.5, M, =5.44.

01

From Table A.1, for M1 =4, =151.8
P,
Po,
forM, =5.44 =871.3
P,
p2/p1 = Pz Po, Po, | (i) (1)(151.8) = 0.1742
Po, Po, P, \8713

From the 0-B-M diagram, at the compression corner for Mz = 5.44 and 0 = 15°, 3 = 23.6°

M n, = 544 sin 23.6° = 2.18



From Table A.2: M, =0.5498 and ps/p2 =5.378

M, 05498

Ms = — = — =
sin(f—6) sin(23.6-15)

p= P3Pz - (5378)(0.1742)(1) =

P, Py
Note that, although the flow directions in regions 1 and 3 are the same, the properties in
region 3 are different than in region 1 due to the losses (entropy increase) across the

shock wave.




8. Consider the arrangement shown in Fig. A 15° half-angle diamond wedge airfoil
is in a supersonic flow at zero angle of attack. A Pitot tube is inserted into the
flow at the location shown in Fig. The pressure measured by the Pitot tube is
2.596 atm. At point a on the backface, the pressure is 0.1 atm. Calculate the free-
stream Mach number M.

Pitot tube

M >1

Solution:
There will be a normal shock wave in front of the face of the Pitot tube immersed in region 3
in Fig. 4.34. Let the region immediately behind this normal shock be denoted as region 4. The
Pitot tube senses the total pressure in region 4, i.e., p,,. The pressure at point a is the static
pressure in region 3. Thus

Pos 2.596
3 B

=25.96

From Table A.2, for p,, /py = 25.96: M; = 4.45. From Table A5, for M; = 4.45, we have
vy = 71.27°. From Eq. (4 .45)

=1 —68=71.27-30=4127
From Table A5, for v, = 41.27"; M, = 2.6. In region 2, we have
M,, = Mysin( — ) = 2.65in(f — 15"} (E.1)

In this equation, both M,,, and B are unknown. We must solve by trial and error, as follows.
Assume M, =4. Then B =27", M,, = M, sinf8 =4sin27° = 1.816. Hence, from
Table A.2, M,,, = 0.612. Putting these results into Eq. (E.1) above,

0.612 = 2.6sin12° = 0.54

This does not check.
Assume M, = 4.5.Then 8 = 25.5°, M,,, = 4.55in25.5° = 1.937. Hence, from Table A2,
M,, = 0.588. Putting these results into Eq. (E.1),

0.588 = 2.6sin 10.5” = 0.47



This does not check. We are going in the wrong direction.
Assume M, = 3.5.Then 8 = 29.2°, M,,, = 3.55in29.2° = 1.71. Hence, from Table A.2,
M,, = 0.638. Putting these results into Eq. (E.1),

0.638 = 2.6sin 14.2° = 0.638

This checks. Thus

M| - 3-5
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