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SPC 407 
Sheet 8 

Compressible Flow – Review 
 

1. The thrust developed by the engine of a Boeing 777 is about 380 kN. Assuming 
choked flow in the nozzles, determine the mass flow rate of air through the 
nozzle. Take the ambient conditions to be 220 K and 40 kPa. 
Solution: 
Assumptions 1. Air is an ideal gas with constant specific heats. 
                            2. Flow of combustion gases through the nozzle is isentropic. 
                            3. Choked flow conditions exist at the nozzle exit. 
                            4. The velocity of gases at the nozzle inlet is negligible. 
Properties The gas constant of air is R = 0.287 kPa.m3/kg-K, and it can also be 
used for combustion gases. The specific heat ratio of combustion gases is k = 
1.33. 
The velocity at the nozzle exit is the sonic speed, which is determined to be 

 
Noting that thrust F is related to velocity by F = m. V , the mass flow rate of 
combustion gases is determined to be 

 
The combustion gases are mostly nitrogen (due to the 78% of N2 in air), and 
thus they can be treated as air 
with a good degree of approximation. 
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2. A stationary temperature probe inserted into a duct where air is flowing at 
190 m/s reads 85°C. What is the actual temperature of the air? 
Solution:  

 
Assumptions  
1. Air is an ideal gas with constant specific heats at room temperature. 
2. The stagnation process is isentropic. 
Properties The specific heat of air at room temperature is cp = 1.005 kJ/kg-
K. 
The air that strikes the probe will be brought to a complete stop, and thus it 
will undergo a stagnation process. The thermometer will sense the 
temperature of this stagnated air, which is the stagnation temperature. The 
actual air temperature is determined from 

 
Temperature rise due to stagnation is very significant in high-speed flows, 
and should always be considered when compressibility effects are not 
negligible. 
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3. Nitrogen enters a steady-flow heat exchanger at 150 kPa, 108 C, and 100 m/s, 
and it receives heat in the amount of 150 kJ/kg as it flows through it. The 
nitrogen leaves the heat exchanger at 100 kPa with a velocity of 200 m/s. 
Determine the stagnation pressure and temperature of the nitrogen at the 
inlet and exit states. 
Solution: 
Nitrogen flows through a heat exchanger. The stagnation pressure and 
temperature of the nitrogen at the inlet and the exit states are to be 
determined. 

 
Assumptions 1. Nitrogen is an ideal gas with constant specific heats. 
                            2. Flow of nitrogen through the heat exchanger is isentropic. 
Properties The properties of nitrogen are cp = 1.039 kJ/kg-K and k = 1.4. 
The stagnation temperature and pressure of nitrogen at the inlet and the exit 
states are determined from 

 
From the energy balance relation in out system Ein – Eout  = ΔEsystem with 
work = 0 
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and 

 
Note that the stagnation temperature and pressure can be very different 
than their thermodynamic counterparts when dealing with compressible 
flow. 
 

4. A subsonic airplane is flying at a 5000-m altitude where the atmospheric 
conditions are 54 kPa and 256 K. A Pitot static probe measures the difference 
between the static and stagnation pressures to be 16 kPa. Calculate the speed 
of the airplane and the flight Mach number. 
Solution: 
A Pitot-static probe measures the difference between the static and 
stagnation pressures for a subsonic airplane. The speed of the airplane and 
the flight Mach number are to be determined. 
Assumptions 1. Air is an ideal gas with a constant specific heat ratio.  
                          2. The stagnation process is isentropic. 
Properties The properties of air are R = 0.287 kJ/kg.K and k = 1.4. 
The stagnation pressure of air at the specified conditions is 

 
Then, 

 
It yields Ma = 0.620 
The speed of sound in air at the specified conditions is 

 
Thus, 

 
Note that the flow velocity can be measured in a simple and accurate way by 
simply measuring pressure. 
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5. Nitrogen enters a converging–diverging nozzle at 620 kPa and 310 K with a 
negligible velocity, and it experiences a normal shock at a location where the 
Mach number is Ma = 3.0. Calculate the pressure, temperature, velocity, Mach 
number, and stagnation pressure downstream of the shock. Compare these 
results to those of air undergoing a normal shock at the same conditions. 
Solution: 
Assumptions  
1. Nitrogen is an ideal gas with constant specific heats. 
2. Flow through the nozzle is steady, one dimensional, and isentropic.  
3. The nozzle is adiabatic. 
Properties The properties of nitrogen are R = 0.297 kJ/kg-K and k = 1.4. 

 
The inlet stagnation properties in this case are identical to the inlet 
properties since the inlet velocity is negligible. Assuming the flow before the 
shock to be isentropic, 

 
Then, 

 
and 

 
The fluid properties after the shock (denoted by subscript 2) are related to 
those before the shock through the functions listed in Table A-14. For Ma1 = 
3.0 we read 
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Then the stagnation pressure P02, static pressure P2, and static temperature 
T2, are determined to be 

 
The velocity after the shock can be determined from V2 = Ma2c2, where c2 is 
the speed of sound at the exit conditions after the shock, 

 
For air at specified conditions k = 1.4 (same as nitrogen) and R = 0.287 
kJ/kg·K. Thus the only quantity which will be different in the case of air is 
the velocity after the normal shock, which happens to be 164.0 m/s. 
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6. In compressible flow, velocity measurements with a Pitot probe can be 
grossly in error if relations developed for incompressible flow are used. 
Therefore, it is essential that compressible flow relations be used when 
evaluating flow velocity from Pitot probe measurements. Consider supersonic 
flow of air through a channel. A probe inserted into the flow causes a shock 
wave to occur upstream of the probe, and it measures the stagnation pressure 
and temperature to be 620 kPa and 340 K, respectively. If the static pressure 
upstream is 110 kPa, determine the flow velocity. 

 
Solution: 
The flow velocity of air in a channel is to be measured using a Pitot-static 
probe, which causes a shock wave to occur. For measured values of static 
pressure before the shock and stagnation pressure and temperature after the 
shock, the flow velocity before the shock is to be determined. 
Assumptions 1. Air is an ideal gas with constant specific heats. 
                            2. Flow through the nozzle is steady and one-dimensional. 
Properties      The specific heat ratio of air at room temperature is k= 1.4. 
The nose of the probe is rounded (instead of being pointed), and thus it will 
cause a bow shock wave to form. Bow shocks are difficult to analyze. But they 
are normal to the body at the nose, and thus we can approximate them 
as normal shocks in the vicinity of the probe. It is given that the static 
pressure before the shock is P1 = 110 kPa, and the stagnation pressure and 
temperature after the shock are P02 = 620 kPa, and T02 = 340 K. Noting that 
the stagnation temperature remains constant, we have 

 
Also,  

 
The fluid properties after the shock are related to those before the shock 
through the functions listed in Table A-14. 
For P02/ P01= 5.64 we read 
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Then the stagnation pressure and temperature before the shock become 
P01 = P02 /0.7209 = (620 kPa)/0.7209 = 860 kPa 

 
The flow velocity before the shock can be determined from V1 = Ma1c1, where 
c1 is the speed of sound before the shock, 

 
Discussion The flow velocity after the shock is V2 = V1/2.6667 = 551/2.6667 
= 207 m/s. Therefore, the velocity 
measured by a Pitot-static probe would be very different that the flow 
velocity. 
 
 
 

 
7. Design a 1-m-long cylindrical wind tunnel whose diameter is 25 cm operating 

at a Mach number of 1.8. Atmospheric air enters the wind tunnel through a 
converging– diverging nozzle where it is accelerated to supersonic velocities. 
Air leaves the tunnel through a converging–diverging diffuser where it is 
decelerated to a very low velocity before entering the fan section. Disregard 
any irreversibilities. Specify the temperatures and pressures at several 
locations as well as the mass flow rate of air at steady-flow conditions. Why is 
it often necessary to dehumidify the air before it enters the wind tunnel? 

 
 
Solution: 
The solution is left to the students. 
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8. A 10 °  half-angle wedge is placed in a "mystery flow" of unknown Mach 

number. Using a Schlieren system, the shock wave angle is measured as 44". 
What is the free-stream Mach number? 

From the 𝜃- 𝛽 - M chart, for 𝜃 = 10° and 𝛽 = 44°, we have 
𝑀1 = 1.8 

This technique has actually been used in some experiments for the measurement 
of Mach number. However, it is usually more accurate and efficient to use a Pitot 
tube to measure Mach number. 
 
9. Consider a 15° half-angle wedge at zero angle of attack. Calculate the pressure 

coefficient on the wedge surface in a Mach 3 flow of air. 
 
Solution: 
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10.  Consider a 15° half-angle wedge at zero angle of attack in a Mach 3 flow of air. 
Calculate the drag coefficient. Assume that the pressure exerted over the base of the 
wedge, the base pressure, is equal to the free-stream pressure. 

 
Solution: 
The physical picture is sketched in Fig. The drag is the net force in the x direction; 
is exerted perpendicular to the top and bottom faces, and p1 is exerted over the 
base. The chord length of the wedge is c. Consider a unit span of the wedge, i.e.. a 
length of unity perpendicular to the xy plane. The drag per unit span, denoted by 
D', is 

 
By definition, the drag coefficient is 
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where S is the planform area (the projected area seen by viewing the wedge from 
the top). Thus, S = (c) ( 1 ). Hence 

 
From Problem 9, we saw that 

 
Thus. 

 
Or 

 
From Problem 9, which deals with the same wedge at the same flow conditions, 
we have p2/p1 = 2.82. Thus 
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11. Consider the 15° half-angle wedge shown in Fig.  We make the assumptions that (1) 
the flow separates at the comers, with the streamlines trailing downstream of the 
corners deflected toward the base at an angle of 15° from the horizontal, as shown 
in Fig, and (2) the base pressure pB is the arithmetic average between the pressure 
downstream of the expansion waves, p3, and the freestream pressure, p1. i.e., pB = 
1/2(p3 + pl). We emphasize that both assumptions are purely arbitrary; they 
represent a qualitative model of the flow with arbitrary numbers, and do not 
necessarily reflect the actual quantitative flowfield values that actually exist in the 
base flow region. Based on the model flow sketched in Fig. calculate the drag 
coefficient of the wedge. 

 
 

Solution: 
From Problem 10, we have these results for the leading edge shock wave and 
properties in region 2 behind the shock: 𝜃= 15°, 𝛽 = 32.2°, Mn1 = 1.6, p2/p1 = 2.82. 
From Table A.2, we obtain Mn2= 0.6684. Hence, 

 
From Table A.1, for M2 = 2.26, po2/p2= 11.75. From Table A.5, for M2 = 2.26, 𝜈2 = 
33.27. Examining Fig., the flow expands from region 2 to region 3 through a total 
deflection angle of 15 + 15 = 30°. Hence, 
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From Table A.5, for 𝜈2 = 63.27" we obtain M3 = 3.82. From Table A.l, for M3 = 3.82, 
po3 /p3 = 119.1. Hence, 

 
Assume pB = 0.5*(p1 + p3). Hence 

 
From Problem 10, the drag coefficient for the wedge, with the base pressure now 
denoted by pB , is given by 

 
 
The value of cd obtained from Problem 10 was the lower value of 0.155. The present 
example indicates that a 36 percent reduction in base pressure results in a 20 
percent increase in drag coefficient. 
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12. Consider an infinitely thin flat plate at a 5° angle of attack in a Mach 2.6 free stream. 
Calculate the lift and drag coefficients. 

 
Solution: 
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13. Calculate the lift and drag (in pounds) on a symmetrical diamond airfoil of 
semiangle 𝜀 = 15 (see Fig.) at an angle of attack to the free stream of 5° when the 
upstream Mach number and pressure are 2.0 and 2116 Ib/ft2, respectively. The 
maximum thickness of the airfoil is t = 0.5 ft. Assume a unit length of 1 ft in the span 
direction (perpendicular to the page in Fig.). 

 
Solution: 

   


t /

sin

.

sin( )

2 0 25

15
 = 0.966 ft 

 
For face (a):    When M1 = 2.0 and  = 10,  = 39.2 
 
 M n1

 = M1 sin  = (2.0) sin 39.2 = 1.264 

 
 M n2

 = 0.8049 

 

 p2 = 
p

p

2

1

 p1 = (1.698)(2116) = 3593 lb/ft2 

 

 M2 = 
M n2

0 8049

3912 10sin( )

.

sin( . ) 



 = 1.65 

 
 2 = 16.34 
 
For face (b):  3 = 2 +  = 16.34 + 30 = 46.34 
 

  M3 = 2.83.  Also 
p

p

o3

3

 = 28.41 
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 p3 = 
p

p

p

po

o3

23

2  p2 = 
1

28 41.









 (4.579)(3595) = 579 lb/ft2 

 
For face (c):  When M1 = 2.0 and  = 20,  = 53.5 
 
 M n1

 = M1 sin  = (2) sin 53.5 = 1.61 

 
 M n4

 = 0.6655 

 

 p4 = 
p

p

4

1

 p1 = (2.857)(2116) = 6045 lb/ft2 

 

 M4 = 
M n4

0 66559

535 20sin( )

.

sin( . ) 



 = 1.21 

 
 4 = 3.806 
 
For face (d):  5 = 4 +  = 3.806 + 30 = 33.81 
 

 M5 = 2.28. Also 
p

p

o5

5

 = 12.12 

 

 p5 = 
p

p

p

po

o5

45

4  p2 = 
1

1212.









 (2.457)(6045) = 1225 lb/ft2 

 
 
Lift is the component of the total aerodynamic force in the y-direction: 

 
 L(per unit span) =   [(p4-p3) cos 20 + (p5-p2) cos 10] 
 
   = 0.966 [(6045-579) cos 20 + (1225-3593 cos 10]  
 
   = 0.966 (5136 – 2332) =  2708 lb per foot of span  
 
Drag is the component of the total aerodynamic force in the x-direction: 
 
 D(per unit span) =   [(p4-p3) sin 20 + (p2-p5) sin 10]  
 
    = 0.99 (1869 + 411) =  2202 lb per foot of span 
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14. Consider a flat plate with a chord length (from leading to trailing edge) of 1 m. 
The free-stream flow properties are M1 = 3, p1 = 1 atm, and T1 = 270 K. Tabulate 
and plot on graph paper these properties as functions of angle of attack from 0 
to 30° (use increments of 5°): 

a. Pressure on the top surface 
b. Pressure on the bottom surface 
c. Temperature on the top surface 
d. Temperature on the bottom surface 
e. Lift per unit span 
f. Drag per unit span 
g. Lift/drag ratio 

 
Solution: 

           M n1
    

p

p

2

1

   p
atm

2
( )

    
T

T

2

1

  T
K
2

( )

 

 

 
  0  19.6  1  1  1  1  270 
  5  23.1  1.18  1.458  1.458  1.115  301 
10  27.4  1.38  2.055  2.055  1.242  335 
15  32.2  1.60  2.820  2.820  1.388  375 
20  37.8  1.84  3.783  3.783  1.562  422 
25  44.0  2.08  4.881  4.881  1.754  474 
30  52.0  2.36  6.331  6.331  2.002  541 
 

 
For M1 = 3, 1 = 49.76, 3 = 1 + , p o1

/p1 = 36.73, To1
/T1 = 2.8 

 

      3   M3    
p

p

o3

3

   p
atm

3
( )

    
T

T

o3

3

  T
K
3

( )

 

 

 
  0  49.76  3  36.73  1  2.8  270 
  5  54.76  3.27  54.78  0.670  3.139  241 
10  59.76  3.58  85.40  0.430  3.563  212 
15  64.76  3.92           136.4.  0.269  4.073  186 
20  69.76  4.32           230.6  0.159  4.732  160 
25  74.76  4.78           407.8  0.090  5.57  136 
30  79.76  5.32           762.8  0.048  6.66  114 
 

 
Per unit span:  L = c (p2 – p3) cos ,   D = c (p2 – p3) cos , 
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 1 atm = 1.01 x 105 N/m2 
 

 
         (p2-p3)       L         D   L/D 
                                        N/m2     N/m       N/m 
 

 
  0  0   0   0    - 
  5  7.94 X 104  7.93 x 104   6.94 x 103  11.4 
 10  1.64 x 105  1.62 x 105  2.85 x 104   5.68 
 15  2.58 x 105  2.49 x 105  6.68 x 104   3.73 
 20  3.66 x 105  3.44 x 105  1.25 x 105   2.75 
 25  4.84 x 105  4.39 x 105  2.05 x 105   2.14 
 30  6.35 x 105  5.50 x 105  3.18 x 105   1.73 
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15. Calculate the drag coefficient for a wedge with a 20° half-angle at Mach 4. 
Assume the base pressure is free-stream pressure. 
 
Solution: 
 
 

 D = 2 
c

cos 20









  p2 sin 20 - p 2 c Tan 20 = 2 c (p2 - p) Tan 20 

 

 cd = 
D

q S

D

p M c

' '


 




2

2

 

 

 cd = 
2 20

2

42

2
2

2c p p Tan

p M c
M

p

p

( ) 














 
 

 
Tan 20 

 
From the --M diagram, for  = 20 and M4 = 4, we have  = 32.5. 
 
 Mn,1 = M1 sin  = 4 sin 32.5 = 4 (0.5373) = 2.149 
 

From Table A.2, for Mn,1 = 2.149, 
p

p

2



 = 5.226 

 

 cd = 
4

14 4 2( . )( )
 (5.226 – 1) (0.364) =  0.275 

 
 

 
 

 


