CHAPTER 2
Solution of the Vibration Equation

1. Introduction
The differential equations that govern the vibration system is given by:
mx + cx + kx = f(t)

where

m: Inertia coefficient

c: Damping coefficient
k Stiffness coefficient

x : Displacement

. . dx
x : Velocity = =

d?x _ dx

X : Acceleration = — =
dt? dt

f(t): Forcing function that might depend on time.

In the linear theory of vibration, m, ¢ and k are constant coefficients. If the forcing
function f(t) is equal to zero, Eq. 1 is described as homogeneous, second order
differential equation. If the forcing function f(t) is not equals to zero, Eq. 1 is
described as nonhomogeneous, second order differential equation. The
nonhomogeneous differential equation corresponds to the case of forced vibration
and the homogeneous differential equation corresponds to the case of free vibration.
In the following sections we present methods for obtaining solutions for both
homogeneous and nonhomogeneous differential equations.

2. Solution of homogeneous differential Equation with constant coefficients

In this section, techniques for solving linear, homogeneous, second order differential
equations with constant coefficients are discussed. Whenever the right-hand side of
Eq. 1 is identically zero, that is

f®)=0

The equation is called a homogeneous differential equation. In this case Eq. 1
reduces to

mi¥+cx+kx=0
By a solution of Eq. 3 we mean a function x(t) which, with its derivatives, satisfies the

differential equation. A solution to Eq. 3 can be obtained by trial and error. A trial
solution is to assume the function x(t) in the following form

(1)

(2)

(3)



x(t) = AePt
The general solution of the differential equation, provided that the roots of the
differential equation are not equal, can be written as

x(t) = AjeP1t + A,eP2t
where

—c+Vc? —4mk

2m
—c—Vc? —4mk

2m

P =

P2 =

That is a complete solution of the second-order ordinary differential equations
contains two arbitrary constants A; and A, . These arbitrary constants can be

determined from the initial conditions, as discussed in later sections.
Clearly the solution of the differential equation depends on the roots p; and p,.

There are three different cases for the roots p; and p, as shown in Table 1.

(4)

(5)

(6)
(7)



Table 1.1. Different Cases of the solution of the second order homogeneous
differential equation with constant coefficients.

Case 1

Case 2

Case 3

Overdamped System

Critically Damped System

Underdamped System

Real distinct roots

Repeated roots

Complex Conjugate Roots

p; and p, are real
numbers and p; # p,

p; and p, are real
numbers and p; = p,

p; and p, are complex
conjugate numbers and

p1 # P
c? > 4mk c? =4mk c? < 4mk
High damping Coefficient Small damping Coefficient
The solution will be in the form of
Case 1 Case 2 Case 3
Overdamped System Critically Damped System | Underdamped System

x(t) = AjePrt + A,eP2t

x(t) = (c; + cyt)ePrt

x(t) = Xe%sin (Bt + ¢)

A; and A, from initial

¢; and ¢, from initial

X and ¢ from initial

conditions conditions conditions
_ —c++Vc?—4mk p1=% =—%
b1 = om
) _—c—/c2 —amk ﬁzzim
2 — om m

If the initial Conditions are given as
X, =x(t=0), v,=x(t=0),

the coefficients A4, 4,, ¢4, ¢;, X and ¢ will be calculated as follows

Case 1

Case 2

Case 3

Overdamped System

Critically Damped System

Underdamped System

x(t) = AjeP1t + A,eP2t

x(t) = (c; + c,t)A ePrt

x(t) = Xe%sin (Bt + @)

Alzw €1 = Xo V. — ax\2
b2 — 1 X = Xg + <%)
A, = Vo — P1Xo C; =V, — P1X, ¢ = tan~! Bxo
P2 — D1 Vo — 0%y




Example 1.1

a. Find the solution of the following homogeneous second-order ordinary
differential equation

X—4x+3x=0
b. If the initial conditions are x, = 2 and v, = 0, plot the response.

Solution.

a. m=1, c=-4, k=3
c? ? 4mk
16 > 4x1x3

Since c? > 4mk, the system is over damped.

—c+ V% —4mk
pP1 =

2m
(-4 +V4° — 4x1x3
P1= 2x1
p1 =3
_—c—\/62—4mk
P2 = om
| —(=4) - V4% - 4x1x3
P2 = 2x1
pz =1

The solution is
x(t) = A;eP1t + A,eP2t
x(t) = Aje3t + Ayet
b. The initial conditions are x, = 2 and v, =0

XoP2 — Vo

A =
Y op -



The solution is

x(t) = Aje3t + Ayet

x(t) = —e3t + 3et

The solution is shown in Fig. 1.1.
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Fig. 1.1. Time response of example 1.1.



Matlab Code of Example 1.1:

Matlab Program 1.1

% Example 1.1

clear all; clf; clc

Tf=1; %Final time, sec

$time Step

dt=1le-3;

no data points=Tf/dt; Snumber of data points to plot
for i=1l:no data points+l

t(i)=(1i-1) *dt;
x(1)=—exp (3*t (1) )+3*exp(t(i));

end

$plotting

figure(1l);plot (t,x, 'linewidth', 2);

xlabel ('Time (sec)', 'FontSize',12);

ylabel ('Displacement (mm)', 'FontSize',12);
axis ([0 1.2*Tf 1.2*min(x) 1.2*max(x)])
grid on

title('Example 1.1 ', 'FontSize',16);
saveas (gcf, 'Example 1 1.tiff'");

Example 1.2

a. Find the solution of the following homogeneous second-order ordinary
differential equation

X+6x+9x =0
b. If the initial conditions are x, = 0 and v, = 1, plot the response.
Solution.
a. m=1, c=6, k=9
¢t 7?7 4mk
36 = 4x1x9

Since c? = 4mk, the system is critically damped.

T 2m - 2x1

P1



The solution is
x(t) = (c; + cyt)ePrt
x(t) = (cq + cyt)e™3t
b. The initial conditions are x, = 0 and v, =1
c1=%x,=0
C, =V, —P1X, =1—(=3)x0=1
The solution is
x(t) = (cq + cyt)e™3t
x(t) = (0 + 1xt)e™3¢
x(t) = te 3¢

The solution is shown in Fig. 1.2.
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Fig. 1.2. Time response of example 1.2.
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Matlab Code of Example 1.2:
Matlab Program 1.2

% Example 1.2

clear all; clf; clc

Tf=4; %$Final time, sec

$time Step

dt=1le-3;

no data points=Tf/dt; Snumber of data points to plot
for i=1l:no data points+l

t(i)=(1i-1) *dt;

x(1)=t (i) .*exp (-3*t (1)) ;

end

$plotting

figure(1l);plot (t,x, 'linewidth', 2);

xlabel ('Time (sec)', 'FontSize',12);

ylabel ('Displacement (mm)', 'FontSize',12);
axis ([0 Tf+1 .8*min(x) 1l.2*max(x)])

grid on

title('Example 1.2 ', 'FontSize',16);
saveas (gcf, 'Example 1 2.tiff'");

Example 1.3

a. Find the solution of the following homogeneous second-order ordinary
differential equation

5X+2x+50x =0
b. If the initial conditions are x, = 0.01 and v, = 3, plot the response.
Solution.
a. m=5, c=2, k=50
¢t 7?7 4mk
4 < 4x5%x50

Since ¢? < 4mk, the system is underdamped.

1 1
B =—+amk —c? = —4/4><5><50 —2%=13.156
2m 2%5



The solution is
x(t) = Xe%sin (Bt + ¢)
x(t) = Xe %2tsin (3.156t + ¢)

b. The initial conditions are x, = 0.01 and v, = 3

x- j (e

3 — (—0.2)x0.01\
X= (0012 + = 0.9512

3.156
v, — ax,
. 3.156x0.01
¢ =tan™?! = 0.6023°

3 —(—-0.2)x0.01
The compete solution is then given by
x(t) = Xe %2tsin (3.156t + ¢)
x(t) = 0.9512e¢~%%sin (3.156t + 0.6023)

The solution is shown in Fig. 1.3.
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Fig. 1.3. Time response of example 1.3.



Matlab Code of Example 1.3:
Matlab Program 1.3

% Example 1.3

clear all; clf; clc

Tf=10; %Final time, sec

$time Step

dt=1le-3;

no data points=Tf/dt; Snumber of data points to plot
for i=1l:no data points+l

t(i)=(1i-1) *dt;
x(1)=0.9512%exp (-0.2*t (1)) *sin(3.156*t (1i)+.6023*pi/180) ;
end

$plotting

figure(1l);plot (t,x, 'linewidth', 2);

xlabel ('Time (sec)', 'FontSize',12);

ylabel ('Displacement (mm)', 'FontSize',12);

axis ([0 Tf+1 1.2*min(x) 1.2*max(x)])

grid on

title('Example 1.3 ', 'FontSize',16);

saveas (gcf, 'Example 1 3.tiff'");

General Matlab code for solving solve homogeneous second order differential
equation of single degree of freedom vibratory system

Matlab Program 1.4

% General Program to plot the response of Second Order ODE
of a vibratory system

clear all; clf; clc

TInputs

m=5; $ mass

c=2; %damping

k=50; %stiffness

Tf=10; %Final time, sec

dt=1le-3; S$time Step

%initial conditions

x0=0.01; % initial displacement

vo=3; % initial velocity

no data points=Tf/dt; Snumber of data points to plot
C= c"2-4*m*k;

Q

% Overdamped System C”*2>4mk

i1f C>0
pl= (-c+sqgrt(c”2-4*m*k))/ (2*m) ;
p2= (-c-sqrt(c”2-4*m*k))/(2*m) ;

Al=(x0*p2-vo) / (p2-pl) ;



A2=(vo-xo*pl) / (p2-pl);

for i=1l:no data points+l
t(i)=(1i-1) *dt;
x(1)=Al*exp (pl*t (i) ) +A2*exp (p2*t (1)) ;
end

end

% Critically damped System C"2=4mk
if C==

pl 1= (-c/(2*m));

cl=xo;

cZ2=vo-xo*pl 1;

for i=1l:no data points+l
t(i)=(1i-1) *dt;
x(1)=(cl+c2*t(i)) *exp(pl 1*t(i));

end

end

% Undrdamped System C”*2<4mk
if C<0

alpha= (-c)/(2*m);

beta= (sqgrt (4*m*k-c”2))/(2*m) ;

X=sqgrt (x0"2+ ( (vo—alpha*xo) /beta) *2) ;
phi=atand ( (beta*xo)/ (vo-alpha*xo)) ;

for i=1l:no data points+l

t(i)=(1i-1) *dt;

x (1)=X*exp (alpha*t (i) ) *sin (beta*t (i) +phi*pi/180) ;
end

end

$plotting

figure(1l);plot (t,x, 'linewidth', 2);

xlabel ('Time (sec)', 'FontSize',12);

ylabel ('Displacement (mm)', 'FontSize',12);
axis ([0 T£f+0.2 1.2*min(x) 1.2*max(x)])
grid on

Dsolve Command in matlab

Dsolve command in Matlab can be used to find the analytical solution of first and
second order ODE as shown in the following two examples.

Example 1.4
By using Dsolve command in Matlab, solve the following ODE:

x(t) =2t — x, x(0)=1



Matlab Program 1.5

% Example 1-4

X=dsolve ('Dx-2*t+x=0", "x(0)=1","'t")
X=simple (X) ;

pretty (X)

ezplot (X, (0:0.05:0.3))

Matlab Output
X =
2*L + 3*exp(-t) - 2

2 t + 3 exp(-t) - 2

2t+3exp(t)-2
T

i I i L
0 0.05 0.1 0.15 02 0.25 03
t

Fig. 1.4. Time response of example 1.4.
The exact solution is
x(t) =3e t+2t—2
Example 1.5

By using Dsolve command in Matlab, solve the following ODE:

3X+x+2x=0
subject to the initial conditions x(0) = 0, x(0) = 0.25 over the time interval 0 < t <
20 sec by using 4th order Runge-Kutta method.

Matlab Program 1.6
% Example 1-5

clc; clear all; clf;
t£=20;



X=dsolve ('3*D2x+1*Dx+2*x=0", 'Dx (0)=0.25", "x (0)

X=simple (X)

pretty (X)

ezplot (X, (0:0.01:20))

grid on

saveas (gcf, 'Example 1 5.tiff'");

Matlab Output

X =

(3%237(1/2) *exp (-t/6) *sin ((23"(1/2)*t) /6)) /46

The exact solution is

t
x(t) = 0.31e" 6 sin (0.79t)

(3 23" exp(-t/8) sin((23"2 t)/6))1146
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Fig. 1.5. Time response of example 1.5.
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3. Solution of nonhomogeneous differential Equation with constant
coefficients

The nonhomogeneous differential Equation with constant coefficients of a vibratory
system is written as:

mx + cx + kx = f(t) (8)
where f(t) is the forcing function. The solution of the equation consists of two parts.
First the complementary solution x, of Eq.8 where the right hand side is equal to zero,
thatis, f(t) = 0. Methods for obtaining the complementary solutions were discussed

in the proceeding sections. The second part of the solution is the particular solution,
X, The complete solution of Eq.8 can be written as

x =complementary solution + particular solution
X = Xc+Xp 9)
where x, is the solution of the equation
m¥. +cx, + kx. =0 (10)
and x,, is the solution of the equation
mi, + cx, + kx, = f(¢t) (11D

The particular solution x,, can be found by the method of undetermined coefficients.

p

The solution of different force functions is given below
1. For a constant Force, the forcing function will be

f(t) =F, (12)
and the particular solution, x,, will be
xp =2 (13)

2. For asinusoidal Force, the forcing function will be

f(t) = F, sin(wt) (14)

and the particular solution, Xp will be

X, = fo sin | wt — <tan‘1 (c—a))> (15)
p \/(k —mw?)? + (cw)? k — mw?




4. Numerical Simulation of the time response

The solution of the vibration problems is often plotted versus time in order to
visualize the physical vibration and to obtain an idea of the nature of the response.
For simple vibration problems, there is analytical (closed form solution for the
displacement as a function of time) solution. However for real life problems, the
equations are more complex and sometimes nonlinear that is difficult or impossible
to solve analytically. The use of numerical solution (integration) greatly enhances the
understanding of vibration. Just as a picture is worth a thousand words, a numerical
simulation or plot can enable a completely dynamic understanding of vibration
phenomena. Computer calculations and simulations are presented at the end of each
chapter.

The free response of any system is usually computed by simple numerical means such
as Euler’s method, Heun’s or Runge-Kutta methods. The basis of the numerical
solutions of ordinary differential equations is to essentially undo calculus by
representing each derivative by a small but finite difference. A numerical solution of
an ordinary differential equation is a procedure for constructing approximate values:
X1, X2, ..., Xn, of the solution x(t) at the discrete values of time: t, < ti ... <t,. Effectively,
a numerical procedure produces a list of discrete values x; = x(ti) that approximates
the solution, as shown in Fig.1, rather than a continuous function x(t), which is the
exact solution.
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Fig. 1.6. Time discretization of time response.



For a single degree of freedom system of the form
miX+cx+kx=0 x(0) = x, v(0) = v, (16)

the initial values x,, (initial displacement) and v, (initial velocity) form the first two
points of the numerical solution. The equation will be solved for values of time t
betweent = 0andt = T, where Tris the total length of time over which the solution
is of interest. The time interval Tf — 0 is then divided into n intervals (so that At =
Tr/n). Then Eq.16 is calculated at the values of t, = 0, t; = At, t, = 2At, ..., t, =
nAt = T to produce an approximate representation, or simulation, of the solution.
The concept of a numerical solution is easiest to grasp by first examining the
numerical solution of a first order scalar differential equation. To this end consider
the first order differential equation

x(t) = f(x,t), x(0) =x, (17)

5. Euler’s Method for first order ODE
The Euler’s method proceeds from the definition of the slope form of the derivative
att =t;is

. oo dx(t) o x(bgg) —x() X
fQx) = A
where 4; is the derivative at time t; and x(t;) = x;
Xi+1 — X
Sy, g,
At '
Xiy1 = X + AtAl
Euler’s Equations
ti+1 = ti + At
Ai = f(ti'xi) (18)

Xiy1 = X + AtAl
Example 2.1
By using Euler’s method, solve the following ODE:

x(t)=5x, x(0)=1 At=0.1



Solution

For i=0:

Fori=1:

ti+1:ti+At:ti+

0.1

A; = f(t;, x;) = 5x;

Xiy1 = X + AtAl

t1:t0+At:0+0.1

=0.1

AO = f(to,xo) = 5x0 = 5X1 = 5

xl = xO + AtAO == 1 + 0.1)(5 = 1.5

t,=t;, +At =0.1+0.1=0.2

A1 == f(tl,xl) == 5x1 == 5X1.5 = 7.5

xz = x1 + AtAl = 1.5 + 0.1X7.5 == 2.15

[teration, i t; X; A; AtA;
0 0 1 51 =5 0.1x5 = 0.5
1 0.1 1+05=1.5 5X1.5=7.5| 0.1x7.5=0.75
2 0.2 1.5+ 0.75 = 2.25

Exact solution can be found by using the following Matlab program

Matlab Program 1.7

X=dsolve ('Dx-5*x=0", 'x(0)=1","t")

X=simple (X) ;
pretty (X)

Te exact solution is:

x(t) = et




A comparison between Euler method numerical solution and the exact solution is
shown in Fig. 1.7.
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45 T T T T K]
Euler
w Exact
4 Xacl N
351 : ~ 4
£
~— 3 - -
=
c
[0]
£
o B
8
S 250 : : .
o
0 )
&)
2 - -
15F : 4
1 g 1 1 | 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (sec)

Fig. 1.7. Time response of example 2.1.
Matlab Code for Example 2.1:

Matlab Program 1.8

% Euler Method Program to plot the response of first Order
ODE

% Example 2 1

clear all; clf; clc

xdot=ax+bt+c

Inputs

o\°

o\°

n
5;

0; %damping

0; %stiffness

Tf=10; %Final time, sec

dt=le-1; S$time Step

%initial conditions

x(1)=1; % initial displacement

x_exact (1)=x(1);

no data points=Tf/dt; S%number of data points to plot

Q

% for i=1:no data points+l

a
b
C

for i=1:3
t(i)=(i-1)*dt;

A(1)= a*x(1)+b*t (1) +c;
x (1+1)=x(1)4+A (1) *dt;



x _exact (i+l)=1*exp(a* (t(1)+dt));

end

t(i4+1)=(1)*dt;

$plotting

figure(1l);plot (t,x, 'linewidth', 2);

hold on

plot(t,x exact,'r:',"'linewidth', 2);
xlabel ('Time (sec) ', 'FontSize',12);

ylabel ('Displacement (mm)', 'FontSize',12);
% axis ([0 T£+0.2 1.2*min(x) 1.2*max(x)])
grid on

legend('Euler', 'Exact', 'location', 'best')
title('Example 2.1 ', 'FontSize',16);
saveas (gcf, 'Example 2 1.tiff'");

Example 2.2
By using Euler’s method, solve the following ODE:

x(t) =2t — x, x(0) =1, At = 0.1

Solution
X, =1, t, =0
tiqr =t +At=¢;+0.1
A = f(t,x) = 2t — x;
Xip1 = X; + AtA4;
For i=0:
ti =ty +At=0+0.1=0.1
Ay = f(tg,xp) =2ty —xo =2%xX0—-1=-1
X1 = X9 +AtAd; =1+ 0.1x(-1) =09
Fori=1

t, =t, +At = 0.1+0.1 =02
A1 = f(tl,xl) == 2t1 - x1 = 2X0.1 - 0.9 = _0.7

X, = x; + AtA; = 0.9 + 0.1x(—0.7) = 0.83



i ti X; Ai AtAl
0 0 1 —1 —0.1

Uy

0.1 0.9 -0.7 —0.07

2 0.2 0.83

It was shown in example 1.4 that the exact solution of this differential equation is
x(t) =3e t+2t—2

A comparison between Heun method numerical solution and the exact solution is
shown in Fig. 1.8.

Example 2.2
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Fig. 1.8. Time response of example 2.2.

Matlab Code for Example 2.2:
Matlab Program 1.10
% Euler Method Program to plot the response of first Order

DE
% Example 2 2

O



clear all; clf; clc

% xdot=ax+bt+c

Inputs

a=-1;

b=2;

c=0;

Tf=0.5; %Final time, sec

dt=le-1; S$time step

%initial conditions

x(1)=1; % initial displacement

x exact (1l)=x(1);

error (1)=abs (x(1l)-x exact(l))/(x exact(l))*100;
no data points=Tf/dt; Snumber of data points to plot
for i=1l:no_data points

t(i)=(1i-1) *dt;

A(1)= a*x(1)+b*t (1) +c;

X (1+1)=x(i)+A (1) *dt;

x _exact (1+1)=3*exp (- (t (1)+dt))+2* (t (1) +dt)-2;
error(i+1)=abs(X_exact(i+1)—x(i+l))/(x_exact(i+l))*lOO;
end

t(i4+1)=(1)*dt;

$plotting

figure(1l);plot (t,x, 'linewidth', 2);

hold on

figure (1) ;plot(t,x exact, 'r:',"'linewidth', 2);
xlabel ('Time (sec) ', 'FontSize',12);

ylabel ('Displacement (mm)', 'FontSize',12);
grid on

legend('Euler', 'Exact', 'location', 'best')
title('Example 2.2 ', 'FontSize',16);

saveas (gcf, 'Example 2 2.tiff'");

Is Euler’s method accurate?

Euler is a first order method that assumes that the slope is constant in the time step
and uses the slope at the beginning. The error in Euler method is first order error and
is related of the time step. That means if you halve the time step the error will halve.
So by decreasing the time step, the error will decrease, but there are better methods
of numerical integration with a higher order error. The better method will find a

better slope.



6. Heun'’s (Modified Euler’s) Method for first order ODE

This method calculates two slopes, the slope at the beginning and end of the time step.
Then by averaging the two slopes we will get a better slope than Euler method.

Slope = f(1,.,,v!.,)
—‘.—'

fle, ) + [t . 5000)

Slope = f(1.y) Slope

N\

(a) (b)

Fig. 1.9. Heun numerical integration method.

Modified Euler (Heun) Equations
tiys =t + At
B; = f(t;, x;)
Xiy1 = x; + AtB;
Ci = f(tiz1, Xig1)

B; + C;
Al: 1.2 L

Xip1 = X; + AtA4;
The condensed form of Modified Euler (Heun) Equations is:
tiys =t; + At
Xiy1 = x; + Atf (t;, x;)

f(tnx) + f(ti+1'97i+1)>

Xiy1 = Xj + At < >
Example 2.3
By using Heun’s method solve the following ODE:

x(t) =2t — x, x(0) =1, At = 0.1

(19)



Solution

ti+1 == ti +At = ti + 01
B; = f(ty,x;) = 2t; — x;
fi+1 = X; + AtBl

C; = f(ti+1ffi+1) = 2841 — Xiy1

B+
Ai: >

Xiy1 = X + AtAl

For i=0:
t1 =t, +At=0+0.1=0.1

BO = f(to,xo) = Zto — X9 = 2X0—-1=-1
‘fl = xO + AtBO =1 + 0.1)((—1) =09
CO == f(tllfl) == 2t1 - fl = 2X0.1 - 0.9 == _0.7

Bo+C, —1+ (=07
0 = 02 0 = ; ) _ 085

X, = Xy + AtAg = 1+ 0.1x(~0.85) = 0.915
Fori=1
t, = t, +At = 0.1+ 0.1 =02
Bl S f(tl,xl) == 2t1 - x1 = 2X0.1 - 0.915 == _0.715
%, = x; + AtB, = 0.915 + 0.1x(—0.7) = 0.845

C, = f(t,,x,) = 2t, — X, = 2x0.2 — 0.845 = —0.445

— = —0.58
L 2 2

X, = x; + AtA; = 0.915 + 0.1x(—0.58) = 0.857



In a tabular form

Iteration, i Xitq C; A; AtA;

Lo+
Ra
o

0 0 1 -1 0.9 -0.7 -85 -0.085

1 0.1 0915 | -0.715 | 0.845 -0.445 -.058 -.0058

2 0.2 0.857

A comparison between 4th order Runge-Kutta method numerical solution and the
exact solution is shown in Fig. 1.10.
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Fig. 1.10. Time response of example 2.3.

Matlab Code for Example 2.3:
Matlab Program 1.11

% Heun Method (Modified Euler) Program to plot the response
of first Order ODE

% Example 2 3

clear all; clf; clc

% xdot=ax+bt+c

$Inputs

a=-1;



l

IIOI\>

b=
c=
Tf O 5, %Final time, sec

dt=le-1; S$time Step

%initial conditions

x(1)=1; % initial displacement

x exact (1l)=x(1);

error (1)=abs (x(1l)-x exact(l))/(x _exact(l))*100;

no data points=Tf/dt; Snumber of data points to plot
for i=1l:no_data points

t(i)=(1-1) *dt;

B(i)= a*x (i) +b*t (i) +c;

x_l =x (1)+B (1) *dt;

C(i)= a*x_ 1+b*(t(1i)+dt)+c;

A(i)= (B(i)+C(i))/2;

x(1+1)=x(1)+A (1) *dt;

x_exact (1+1)=3*exp (- (t (1i)+dt))+2* (£t (1) +dt) -
error (i+1)=abs (x_exact (i+1l)-x(i+1l))/(x exact (i+1))*100;
end

t(i4+1)=(1)*dt;

$plotting

figure(1l);plot (t,x, 'linewidth', 2);

hold on

figure (1) ;plot(t,x exact, 'r:',"'linewidth', 2);
xlabel ('Time (sec) ', 'FontSize',12);

ylabel ('Displacement (mm)', 'FontSize',12);
grid on

legend('Heun', 'Exact','location', 'best')
title ('Example 2.3 ', 'FontSize',16);

saveas (gcf, 'Example 2 3.tiff'");

7.4t order Runge-Kutta Method for first order ODE

Euler's method and the improved Euler's method are the simplest examples of a
whole family of numerical methods to approximate the solutions of differential
equations called Runge-Kutta methods. In this section we will give third and fourth
order Runge-Kutta methods and discuss how Runge-Kutta methods are developed.
Euler's method and the improved Euler's method both try to approximate Euler's
method approximates the slope of the secant line by the slope of the tangent line at

the left endpoint

The improved Euler's method uses the average of the slopes at the left endpoint and
the approximate right endpoint (that is the right endpoint as computed by Euler's
method) to approximate the slope of the secant line. We don't have to stop there
either. We can keep finding slopes at different points and computing weighted
averages to approximate the slope of the tangent line. Numerical methods to
approximate the solution of differential equations in this fashion are called Runge-

Kutta methods (after the mathematicians Runge and Kutta).



This method calculates four slopes, the slope at the beginning, middle and end of the
time step. Then by using the weighted average of the four slopes we will get a better
slope than Euler method.

By considering the following first order ODE:

x(t) = f(x,t), x(0) =x, (20)

At
Xiy1 = X + ?(Si,l + ZSi,Z + Si,3 + Si,4) (21)

where
Sip = f(tix;)

At At
Sio=f <ti +—-,x+ _Si,l)

2 2
At At
Siz=1Ff <ti + > %i + ?Si,z)

Si,4- = f(tl + At, X + AtSi,3)

4th order Runge-Kutta Equations:
ti =t; + At
Sia = f(ti,x;)
Xiy11 =% + At/2 XS,
Siz = f(ti + At/2 ;fi+1,1)
Xiy12 = % + At/2 XS,
Siz = f(ti + At/2 ;fi+1,2) (22)
Xit13 = x; + AtXS; 5
Sia = f(ti + At, fi+1,3)

Si1+285,+2853+S;4
i =
6

Xiv1 = X; + AtQ;



An example of the first calculation is shown below for i=0
t, =ty + At
Sox = f(to,%0)

X1 = %o +At/2 XSy
Soz = f(to +At/2,%,,)

X1, = %o+ At/2 XSy,
Sos = f(to +At/2,%,,)

X13 = x; + AtXSy 5

50‘4 = f(tl + At, 21'3)

_ 50,1 + 250’2 + 250’3 + 50‘4
0=
6

x1 = xO + AtQO

The solution was computed by using Matlab software and the response is shown in
Fig. 1.11.
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Fig. 1.11. Time response of example 2.4.



Matlab Code for Example 2.4:

Matlab Program 1.12

% Runge-Kutta 4th order Program to plot the response of
first Order ODE

% Example 2 4

clear all; clf; clc

% xdot=ax+bt+c

Inputs

a=-1;

b=2;

c=0;

Tf=0.5; %Final time, sec

dt=le-1; S$time Step

%initial conditions

x(1)=1; % initial displacement

x_exact (1)=x(1);

error (1)=abs (x(1l)-x exact(l))/(x _exact(l))*100;

no data points=Tf/dt; Snumber of data points to plot

t(i)=(1i-1) *dt;

S1(1)= a*x(1)+b*t(i)+c;

x 1=x(i)+S1(i)*dt/2;

S2(i)= a*x 1l+4b* (t(i)+dt/2)+c;

X 2=x(1)+S2(1i)*dt/2;

S3(i)= a*x 2+4b* (t(i)+dt/2)+c;

x 3=x(1)+S3 (i) *dt;

S4(i)= a*x 3+b* (t(i)+dt)+c;

Q(i1)= (S1(i)+2*S2(1)+2*S3(1)+S4(1))/6;

X (1+1)=x(1i)+0Q (1) *dt;

x_exact (1+1)=3*exp (- (t (1)+dt))+2* (t (1) +dt)-2;
error (i+1)=abs (x_exact (i+1l)-x(i+1l))/(x exact (i+1))*100;
end

t(i4+1)=(1)*dt;

$plotting

figure (1) ;plot(t,x, 'linewidth', 2);

hold on

figure (1) ;plot(t,x exact, 'r:', "'linewidth', 2);
xlabel ('Time (sec)', 'FontSize',12);

ylabel ('Displacement (mm)', 'FontSize',12);
grid on

legend ('RK4', 'Exact','location', 'best')
title('Example 2.4 ', 'FontSize',16);

saveas (gcf, 'Example 2 4.tiff'");



Comparison of the numerical integration methods

Iteration | Euler Heun RK4 Exact
1 1 1 1 1
2 0.9 0.915 | 0.914513 | 0.914512
3 0.83 | 0.857075 | 0.856193 | 0.856192
4 0.787 | 0.823653 | 0.822455 | 0.822455
5| 0.7683 | 0.812406 | 0.810961 | 0.81096

The error percentage for each method is show in the following table

Iteration | Euler Heun RK4
1 0 0 0
2 | 1.586885 | 0.053334 2.69E-05
3 | 3.059156 | 0.103101 5.20E-05
4| 4.310835 | 0.145687 7.34E-05
5| 5.260448 | 0.178272 8.98E-05

The time response plot for each method is shown in the Fig. 1.12.
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Fig. 1.12. Comparison mf the time response for Euler, Heun’s, 4th order Runge-Kutta
and exact solution.



8. Numerical Integration of second order DOE

The Euler's, Heun's, Runge-Kutta methods can be applied to first order systems only.
So that it will be necessary to convert the second order vibration equation into two
first order equations. The non-homogeneous differential equation with constant
coefficients of a vibratory system is written as:

miX+cx+kx=0 x(0) = x, v(0) = v, (23)
To achieve this, new variables y; and y, are defined as follows

vy, = x(t) and y, = x(t)
Hence

X = X=y, =W X =y,
Substitute into Eq.23
my; +cy; + ky, = f(t)

. cC k +f(t)
V2 = myz m}’1 m

Therefore, we are going to solve the next two first order equations:

V1=
) c k 24
J’ZZ_E}’Z_E}H"‘f(t) (24)
In matrix form:
y 0 1 V1 0
1 = k t
R e il
m m m
Equation 24 can be written as
y =Ay + B(t) (25)
_ )’1(0)] _ [X(O)] I 2
y(0) = [yz(O) ~x(0)] T [vo]
where
0 1 0
N il
m m m



=il =B =B =6

The matrix A defined in this way is called the state matrix and the vector y is called
the state vector. The position y; and the velocity y, are called the state variables.
Now the Euler and Range-Kutta methods of numerical solution can be applied to
Eq.25 as follows:

Euler Method
tiy1 =t; + At
S = Ay(Q) + B(t) 26)
y(@i+1) = y(i) + AtS,
Runge-Kutta Method
tiy1 =t; + At
Si1 = Aexf(t, ()
f(tuy®) = Ay + B(¢)
1 +1) = y(@) +S;1/2
Siz = f(ti +4t/2,5,(i+ 1))
f(ti+Ac/2,5,.(i+ 1) = Ay, (i + 1) + B(t; + At/2)
P, +1) = y(i) +5,/2
Siz = f(t; +At/2,5,( + 1)) (27)

f(ti +At/2,7,(i+ 1)) = A¥,(i + 1) + B(t; + At/2)
Pa(i+1) =y + Si3
Sia = f(t; + At 73(0 + 1))
f(t; + A6, 55+ 1) = A¥5(i + 1) + B(t; + At)

Si1+285,+253+S;4
i =
6

yi+1) =y +0Q



Example 3.1

Plot the response of 3X + x + 2x = 0 subject to the initial conditions x(0) = 0,
x(0) = 0.25 over the time interval 0 < t < 20 sec by using 4th order Runge-Kutta
method.

Solution
The first step is to write the equation of motion in first-order form:

3X+x+2x=0

_ 1. 2
X = 3x 3x
Let
vy, = x(t) and y, = x(t)
Hence
Vi=Y2=X
y2=5c'=—§5c—§x
Yi=Y2=X
28

y=[l =B v == [
In matrix form:

-2 e+

Eq. 28 can be written as
y=Ay+B(t)

0= L0 (0] - [51-1,%



where

0 1
a=| 2 1|,p=[°
il

Numerical iterations:
Assume At = 0.01

Fori = 0:
ty =t, +At =0+ 0.01 =0.01

Si1 = Atxf(to,y(0)) = Atxf(0,y(0))

£(0,y(0)) = Ay(0) + B(0)

v = [20] = (1= [o3s]

0 1
COR ER PR

0 17 0
£(0,y(0)) = [_ 2 1y +||
3 3.

f(0.y(0) = [—(())'.?323

~ B 0.25 1_ [ 0.0025
Si1 = Atxf(O,y(O)) = 0.01x —0.083] N [—0.00083

o Sia Atxf(0,y(0)) 0 1,1 7 00025
W) =y0)+—" =y + 2 = [0.25] g [—0.00083

. _10.00125
(D) = 0.24958

Sz = Atxf(t, + At/2,5,(1)) = Atxf(0 + 0.01/2,5,(1))
S;, = Atxf(0.005,7,(1))

£(0.005,%,(1)) = Ay,(1) + B(0.005)

0 1
£(0.005,7,(1)) = [_3 1
3 3

(D ++[]



£(0.005,7, (1) =

] [N

0.24958

£(0.005,3:.(1) = [ g4

0.0024958

Siz = Aexf(0.005, 3, (D)= 7

Atxf(O 005, 7, (1)) [ ]+ . [0-0024958
2 0.25 —0.00084

Si2
¥.(1) = y(0) t—-= y(0) +

0.001248

$2(1) = 524958

Sz = Atxf(t, + At/2,5,(1)) = Atxf(0 4+ 0.01/2,7,(1))
S;3 = Atxf(0.005, 7,(1))

£(0.005,7,(1)) = A¥,(1) + B(0.005)

YZ(l) ++ ]

£(0.005,%,(1)) = [

0o 1
£(0.005,7,(1)) = [_ % _%] [0(592041925488] + [8]

£(0.005, 53, (1)) = [4700)
S;5 = Atxf£(0.005, 7,(1))= 0. (())00261(;9855
7a(1) = y(0) + 83 = y(0) + A (0.005, 5, (1) = [ 5] + [0
7@ = g24016.

Sia = AtXf(t, + AL, F5(1)) = Atxf(0 + 0.01,¥5(1))
S = Atxf(0.01,75(1))

£(0.01,75(1)) = AF5(1) + B(0.01)



72D + + ]

0 1
£(0.01,7;(1)) = [_E 1
3 3

0 1
£(0.01,75(D) = [_g _él [05323228] + [8]

) 0.24916
f(0.01,3:(D) = | 7§ hga7

. 0.0024916
Sia = Bxf(0.05,55(1)=| ") o oonar

S 285, + 253+ 554
1=
6

L PR e

¢ 6

0, = [0.0024958
17 1-0.00084

yi+1) =y +0

y(1) =y(0)+ ¢

v = [o 551+ (200084

_ 10.0024958
y(1) = [ 0.24916

The Matlab Code for solving Second order, vibration system ODE of Example 3.1:

Matlab Program 1.13

%$Matlab Code for Single Degree of freedom vibratory System
by Using RK4

$Example 3 1

function Ex3 1

clear all; clf; clc;

global m k c

global dt t t rk

Inputs
= 3; % mass (Kg)

3



= 2; % Stiffness (N/mm)
= 1; % damping coefficient (N.s/mm)
%initial conditions
x0=0; % initial displacement (mm)
vo=0.25; % initial velocity (mm/s)
% time
tf = 20; %(sec)
dt = 0.01; % (sec)

Q o~

xstate = [xo; vo]; % (mm; mm/sec)

for i=1:tf/dt

t = dt*i;

xstate = RK(xstate);

results

z (i) = xstate(l); % Displacement (mm)
g(i) = xstate(2); % Velocity (mm/sec)
end

Q

% Calculating Exact Solution
C= c"2-4*m*k;
% Overdamped System C”*2>4mk

if C>0
pl= (-c+sqgrt(c”2-4*m*k))/ (2*m) ;
p2= (-c-sqrt(c”2-4*m*k))/(2*m) ;

Al=(x0*p2-vo)/ (p2-pl);

A2=(vo-xo*pl)/ (p2-pl) ;

for i=1:tf/dt+1l

tl(1)=(i-1) *dt;

x _exact (1)=Al*exp(pl*tl (1)) +A2%exp (p2*tl(1));
end

end

% Critically damped System C”*2=4mk
if C==

pl 1= (-c/(2*m));

cl=xo;

cZ2=vo-xo*pl 1;

for i=1:tf/dtl

tl(i)=(i-1)*dt;

x _exact (i)=(cl+c2*tl (1)) *exp(pl 1*tl (1)),
end

end

% Undrdamped System C”*2<4mk

if C<0

alpha= (-c)/(2*m);

beta= (sgrt (4*m*k-c”2))/(2*m) ;

X=sqgrt (xo0"2+ ( (vo—alpha*xo) /beta) *2) ;
phi=atand ( (beta*xo)/ (vo-alpha*xo)) ;

for i=1:tf/dt+1

tl(i)=(i-1)*dt;

X _exact (1)=X*exp (alpha*tl(i)) *sin(beta*tl (i)+phi*pi/180);



end

end

$plotting

plot (0:dt:tf, [x0,2z], "linewidth', 2);

hold on

plot(tl,x exact,'r:','linewidth', 2);
xlabel ('Time (sec)', 'FontSize',12); ylabel ('Displacement
(mm/sec) ', 'FontSize',12);

title(' Transient Response', 'FontSize',15)
legend ('Numerical', 'Exact','location', 'best')
grid on

saveas (gcf, 'Example 3 1.tiff'");

figure (2)

plot (0:dt:tf, [x0,2z], "linewidth', 2);

hold on

plot (0:dt:tf, [vo,qg],'r:', 'linewidth', 2); xlabel ('Time
(sec) ', 'FontSize',12);

title(' Transient Response', 'FontSize',15)
legend('Displacement', 'Velocity','location', 'best')
grid on

saveas (gcf, 'Example 3 1 velocity.tiff');
function xstate= RK(xstate)

global dt t t rk

t rk=(t-dt);

S1 = dt * x dot( xstate ) 7

t rk=(t-dt)+dt/2;

S2 = dt * x dot( xstate + S51/2);

t rk=(t-dt)+dt/2;

S3 = dt * x dot( xstate + S52/2);

t rk=(t-dt)+dt;

S4 = dt * x dot( xstate + S3 );

0=1/6 *(S1 + 2*S2 4+ 2*S3 + S4);

xstate = xstate + Q;

function xdot=x_dot (X)

global m k c

% forcing function

F t= force;

A=[0, 1; -k/m, -c/m];

b=[0; F t/m];

xdot = A*X+b;

function F of t =force

global t rk

F of t=0;

5 F of t=240000*t rk;



The time response is plotted in Fig. 1.13.
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Fig. 1.13. Time response of example 3.1.

It was shown in example 1.5 that the exact solution of this differential equation is

t
x(t) = 0.31e 6sin (0.79t)
9. Enhancements to Runge-Kutta integration method

Runge-Kutta method can be enhanced by treating the time step At as a variable, At;.
Ateach time t;, the value of At; is adjusted based on how rapidly the solution of x(t)is
changing. If the solution is not changing very rapidly, a large value of At; is allowed
without increasing the formula error. On the other hand, if x(t)is changing rapidly, a
small At; must be chosen to keep the formula error small. Such step sizes can be
chosen automatically as part of the computer code for implementing the numerical
solution.

Matlab has two different Runge-Kutta based simulations: ode23 and ode45. These
are automatic step-size integration methods (i.e., At is chosen automatically).

Example 3.1 can be solved by using ode45 function in matlab as follows
Matlab Program 1.14
Create and save the following code as sdof .m

% function Ex 3 1 ODEA45

function xdot=sdof (t, x)



o\°

m = 3; mass (Kqg)

k = 2; Stiffness (N/mm)

c = 1; damping coefficient (N.s/mm)
xdot=zeros (2,1);

xdot (1)=x(2);

xdot (2)=(-k/m) *x (1) + (-c/m) *x (2) ;

o\°

o\°

In the same directory as sdof.m, create a new m-file as follows:

% Program to solve 1 DOF vibration system by using RK-4
clear all; clf; clc;

to=0;

tf=20;

xo=[0 0.25];

[t,x]=0ded5('sdof', [to tf], x0);
plot(t,x(:,1), ' 'linewidth', 2); xlabel ('Time

(sec) ', 'FontSize',12);

hold on

plot(t,x(:,2),'r:"', 'linewidth', 2); xlabel('Time
(sec) ', 'FontSize',12);

title(' Transient Response', 'FontSize',15)
legend('Displacement', 'Velocity','location', 'best')
grid on

saveas (gcf, 'Example 3 1 ODE45.tiff');

The time response by using ODE45 function is shown in Fig. 1.14.

Example 3.1 By using ode45 function
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Fig. 1.14. Time response of example 3.1 by using ode45 Matlab function.



